TYPICAL

DISCOVERY MI PET/CT
FINAL STUDY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11/Apr/2019</td>
<td>Initial release per PIM revision 3</td>
</tr>
</tbody>
</table>

A mandatory component of this drawing set is the GE Healthcare Pre Installation manual. Failure to reference the Pre Installation manual will result in incomplete documentation required for site design and preparation.

Pre Installation documents for GE Healthcare products can be accessed on the web at: www.gehealthcare.com/siteplanning

GE does not take responsibility for any damages resulting from changes on drawings made by others. Errors may occur by not referring to the complete set of final issue drawings. GE cannot accept responsibility for any damage due to the partial use of GE final issue drawings, however caused. All dimensions are in millimeters unless otherwise specified. Do not scale from printed pdf files. GE accepts no responsibility or liability for defective work due to scaling from these drawings.
GENERAL SPECIFICATIONS

- GE is not responsible for the installation of developers and associated equipment, lighting, cassette trays and protective screens or derivatives not mentioned in the order.
- The final study contains recommendations for the location of GE equipment and associated devices, electrical wiring and room arrangements. When preparing the study, every effort has been made to consider every aspect of the actual equipment expected to be installed.
- The layout of the equipment offered by GE, the dimensions given for the premises, the details provided for the pre-installation work and electrical power supply are given according to the information noted during on-site study and the wishes expressed by the customer.
- The room dimensions used to create the equipment layout may originate from a previous layout and may not be accurate as they may not have been verified on site. GE cannot take any responsibility for errors due to lack of information.
- Dimensions apply to finished surfaces of the room.
- Actual configuration may differ from options presented in some typical views or tables.
- If this set of final drawings has been approved by the customer, any subsequent modification of the site must be subject to further investigation by GE about the feasibility of installing the equipment. Any reservations must be noted.
- The equipment layout indicates the placement and interconnection of the indicated equipment components. There may be local requirements that could impact the placement of these components. It remains the customer’s responsibility to ensure that the site and final equipment placement complies with all applicable local requirements.
- All work required to install GE equipment must be carried out in compliance with the building regulations and the safety standards of legal force in the country concerned.
- These drawings are not to be used for actual construction purposes. The company cannot take responsibility for any damage resulting therefrom.

CUSTOMER RESPONSIBILITIES

- It is the responsibility of the customer to prepare the site in accordance with the specifications stated in the final study. A detailed site readiness checklist is provided by GE. It is the responsibility of the customer to ensure all requirements are fulfilled and that the site conforms to all specifications defined in the checklist and final study. The GE Project Manager of Installation (PMI) will work in cooperation with the customer to follow up and ensure that actions in the checklist are complete, and if necessary, will aid in the rescheduling of the delivery and installation date.
- Prior to installation, a structural engineer of record must ensure that the floor and ceiling is designed in such a way that the loads of the installed system can be securely borne and transferred. The layout of additional structural elements, dimensioning and the selection of appropriate installation methods are the sole responsibility of the structural engineer. Execution of load bearing structures supporting equipment on the ceiling, floor or walls are the customer’s responsibility.

RADIO-PROTECTION

- Suitable radiological protection must be determined by a qualified radiological physicist in conformance with local regulations. GE does not take responsibility for the specification or provision of radio-protection.

GLOBAL SITE READINESS CHECKLIST (DI)

DISCLAIMER

CUSTOMER RESPONSIBILITIES

- Suitable radiological protection must be determined by a qualified radiological physicist in conformance with local regulations. GE does not take responsibility for the specification or provision of radio-protection.

GLOBAL SITE READINESS CHECKLIST (DI)

DOC1809666 Rev. 6

<table>
<thead>
<tr>
<th>Field Service Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment:</td>
</tr>
<tr>
<td>Site Visit Date for SRC:</td>
</tr>
</tbody>
</table>

General Site Planning

- Room dimensions, including ceiling height, for all Exam, Equipment/Technical & Control rooms meets GE specifications.
- Ceiling support structure, if on the GE drawing, is at correct location and height according to the drawing specifications. Levelness and spacing has been measured. Overhead support Structure has been confirmed with contractor to meet GE criteria.
- Rooms that will contain equipment, including staging areas if applicable, are construction debris free. Precautions must be taken to prevent debris from entering rooms containing equipment.
- Delivery route from truck to installation space has been reviewed, all communications have occurred, arrangements made for special handling (if needed). Floors along delivery route will support weight of the equipment, reinforcements arranged if needed.
- System power & grounding (PDB/MDP) is available as per GE specifications, installed at point of final connection and ready to use. Lock Out Tag Out is available.

Specific for PET and Nuclear Medicine

- Nuclear Medicine systems levelness measurement survey must be provided to GE prior to delivery.
- Site has license for using/importing radioactive sources and a Hot Lab is available. Radioactive Sources should be available for system calibration during installation.
- Doors and windows complete or scheduled to be installed. If applicable, radiation protection (shielding) finished & radioprotection regulatory approval for installation obtained.

THE UNDERSIGNED, HEREBY CERTIFIES THAT I HAVE READ AND APPROVED THE PLANS IN THIS DOCUMENT.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
</table>

SIGNATURE

TYPICAL

DISCOVERY MI PET/CT

EN-PET-TYP-DISCOVERY-MI-WEB.DWG

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11/Sept/2019</td>
<td>C2 - Disclaimer - Site Readiness</td>
</tr>
</tbody>
</table>
Any deviation from these drawings must be communicated in writing to and reviewed by your local GE Healthcare Installation project manager prior to making changes.

Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE Healthcare Installation project manager can supply a reference list of rigging contractors.

New construction requires the following:
1. Secure area for equipment,
2. Power for drills and other test equipment,
3. Capability for image analysis,
4. Restrooms.

Provide for refuse removal and disposal (e.g. crates, cartons, packing)

It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

CUSTOMER SITE READINESS REQUIREMENTS

This equipment involves the use of radioactive isotopes, including those sources necessary for equipment calibration. Appropriate regulatory compliance and licensing must be arranged by the customer early in the planning process and then demonstrated/available for equipment installation.

Note: delivery path down corridors for gantry's and table must be evaluated prior to construction, as 90 degree turns require specific corridor width.

It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

Any deviation from these drawings must be communicated in writing to and reviewed by your local GE Healthcare Installation project manager prior to making changes.

Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE Healthcare Installation project manager can supply a reference list of rigging contractors.

New construction requires the following:
1. Secure area for equipment,
2. Power for drills and other test equipment,
3. Capability for image analysis,
4. Restrooms.

Provide for refuse removal and disposal (e.g. crates, cartons, packing)

It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

Any deviation from these drawings must be communicated in writing to and reviewed by your local GE Healthcare Installation project manager prior to making changes.

Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE Healthcare Installation project manager can supply a reference list of rigging contractors.

New construction requires the following:
1. Secure area for equipment,
2. Power for drills and other test equipment,
3. Capability for image analysis,
4. Restrooms.

Provide for refuse removal and disposal (e.g. crates, cartons, packing)

It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

Any deviation from these drawings must be communicated in writing to and reviewed by your local GE Healthcare Installation project manager prior to making changes.

Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE Healthcare Installation project manager can supply a reference list of rigging contractors.

New construction requires the following:
1. Secure area for equipment,
2. Power for drills and other test equipment,
3. Capability for image analysis,
4. Restrooms.

Provide for refuse removal and disposal (e.g. crates, cartons, packing)

It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.
RADIATION PROTECTION LAYOUT

SHIELDING REQUIREMENTS:
Engage a qualified radiological health physicist to review your scan room shielding requirements, taking into consideration:

- Scatter radiation levels within the scanning room.
- Equipment placement.
- Weekly projected work-loads (number of patients/day technique (kVp*mA)).
- Materials used for construction of walls, floors, ceiling, doors, and windows.
- Activities in surrounding scan room areas.
- Equipment in surrounding scan room areas (e.g., film developer, film storage).

For small and medium filter survey, the 20 cm water phantom should be placed on the phantom headholder inserted into the end of the patient table.

The four scatter surveys depict measured radiation levels within the scanning room at the indicated distances, while scanning a 16 cm CTDI phantom for the Head Scan mode and 32 cm CTDI phantom for the Body Scan Mode. Use the mA, kV and aperture scaling factors in the table shown here to adjust exposure levels to the scan technique used at the site.

For example: The exposure level for a 120 kV, 800 mA, 1 sec scan at 50" (127 cm) away from the scan plane is:

\[10.4 \mu \text{Gy} \times 0.71 \times \frac{800}{100} = 59.1 \mu \text{Gy} \]

NOTE: Actual measurements can vary. Expected deviations equals ±15%, except for the 5 mA and 1.25mm techniques, where variations may be greater (up to a factor of 2), due to the inherent deviation in small values. The maximum deviation anticipated for tube output equals ±40%.

<table>
<thead>
<tr>
<th>CHANGED PARAMETER</th>
<th>MULTIPLICATION FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>new mA/100</td>
</tr>
<tr>
<td>80 kV</td>
<td>0.24</td>
</tr>
<tr>
<td>100 kV</td>
<td>0.45</td>
</tr>
<tr>
<td>120 kV</td>
<td>0.71</td>
</tr>
<tr>
<td>140 kV</td>
<td>1.00</td>
</tr>
<tr>
<td>3 mm aperture</td>
<td>0.20</td>
</tr>
<tr>
<td>5 mm aperture</td>
<td>0.22</td>
</tr>
<tr>
<td>10 mm aperture</td>
<td>0.27</td>
</tr>
<tr>
<td>15 mm aperture</td>
<td>0.38</td>
</tr>
<tr>
<td>20 mm aperture</td>
<td>0.48</td>
</tr>
<tr>
<td>30 mm aperture</td>
<td>0.59</td>
</tr>
<tr>
<td>40 mm aperture</td>
<td>0.79</td>
</tr>
<tr>
<td>50 mm aperture</td>
<td>1.00</td>
</tr>
</tbody>
</table>

RADIOACTIVE ISOTOPES

RADIOACTIVE ISOTOPES AND RADIPROTECTION
Since the system produces X-ray radiation and involves the use of radioactive isotopes, compliance with Nuclear Regulatory Commission regulations (or country similar regulatory requirements), must be adhered to and all permissions obtained well in advance.

It is Customer’s responsibility consult a qualified radiological health physicist for radiation protection requirements for the walls, floor, ceiling, doors, window glass, etc. (lead content and thickness) and warning lights and signs, in accordance with local requirements.

It is essential that regulatory compliance and preparations are completed early so that required source materials can be obtained prior to installation, including calibration sources and isotopes. These sources and isotopes may have fairly long delivery lead times and a short half-life, so that it may not be advisable to store them over long periods of time.

<table>
<thead>
<tr>
<th>RADIOACTIVE SOURCE - ISOTOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PET/CT system uses one radioactive source during calibration and the Daily QA Check.</td>
</tr>
<tr>
<td>Isotope</td>
</tr>
<tr>
<td>Ge-68</td>
</tr>
<tr>
<td>Fluorine 18</td>
</tr>
<tr>
<td>Nitrogen 13</td>
</tr>
</tbody>
</table>

Typical Positron Emitting Isotopes include

It is customer’s responsibility provide isotopes for system calibration and prepare the required doses.
DELIVERY

- **THE CUSTOMER/CONTRACTOR SHOULD:**
 - Provide an area adjacent to the installation site for delivery and unloading of the GE equipment.
 - Ensure that the dimensions of all doors, corridors, ceiling heights are sufficient to accommodate the movement of GE equipment from the delivery area into the definitive installation room.
 - Ensure that access routes for equipment will accommodate the weights of the equipment and any transportation, lifting and rigging equipment.
 - Ensure that all necessary arrangements for stopping and unloading on public or private property not belonging to the customer have been made.

<table>
<thead>
<tr>
<th>DIMENSIONS OF DELIVERY WITH DOLLY TRANSPORT EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>CT GANTRY</td>
</tr>
<tr>
<td>LENGTH</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>HEIGHT</td>
</tr>
<tr>
<td>PET WELDMENT GANTRY</td>
</tr>
<tr>
<td>LENGTH</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>HEIGHT</td>
</tr>
<tr>
<td>PATIENT TABLE</td>
</tr>
<tr>
<td>LENGTH</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>HEIGHT</td>
</tr>
</tbody>
</table>

Above dimensions shown with side rails on. The minimum unobstructed hallway width is 1803 mm, the minimum clear doorway openings is 1067 mm to accommodate delivery of the system.
STRUCTURAL NOTES

- Methods of support for the steelwork that will permit attachment to structural steel or through bolts in concrete construction should be favored. Do not use concrete or masonry anchors in direct tension.

- All units that are wall mounted or wall supported are to be provided with supports where necessary. Wall supports are to be supplied and installed by the customer or his contractors. See plan and detail sheets for suggested locations and mounting hole locations.

- All ceiling mounted fixtures, air vents, sprinklers, etc. To be flush mounted, or shall not extend more than 6.35mm (1/4") below the finished ceiling.

- Floor slabs on which equipment is to be installed must be level to 6.00mm (1/4") in 3050mm (10'-0")

- Dimensions are to finished surfaces of room.

- Customers contractor must provide all penetrations in post tension floors.

- Customers contractor must provide and install any non-standard anchoring. Documents for standard anchoring methods are included with GE equipment drawings for geographic areas that require such documentation.

- Customers contractor must provide and install hardware for "through the floor" anchoring and/or any bracing under access floors. This contractor must also provide floor drilling that cannot be completed because of an obstruction encountered while drilling by the GE installer such as rebar etc.

- It is the customer's responsibility to perform any floor or wall penetrations that may be required. The customer is also responsible for ensuring that no subsurface utilities (e.g., electrical or any other form of wiring, conduits, piping, duct work or structural supports (i.e. post tension cables or rebar)) will interfere or come in contact with subsurface penetration operations (e.g. drilling and installation of anchors/screws) performed during the installation process. To ensure worker safety, GE installers will perform surface penetration operations only after the customer's validation and completion of the "GE surface penetration permit"
1. Floor contact area for discovery gantry and patient table. See detail on Structural Detail sheets for more information.

2. Structural supports for fastening the overhead counterpoised suspension. Support should run continuous with no fittings extending below face of channel, be parallel, square, and in the same horizontal plane, above finished ceiling. Ensure mounting surface is installed level or plumb within +/- 1 degree, and is structurally sufficient to maintain a level or plumb condition under 110 lb (50kg) system load and maximum system moment of 4400 in-lb (500n-m). Methods of support that will permit attachment to structural steel or through bolts in concrete construction should be favored. Do not use screw anchors in direct tension. 14" x 14" x 1/2" thick steel plate provided by manufacturer. See detail on structural detail sheets.

3. Support Backing, locate as shown.
ANCHORING/LOADING DISTRIBUTION TO THE FLOOR

(1)	PET primary scan plane axis
(2)	CT scan plane axis
(3)	Longitudinal axis
(4)	Cable and hose access
(5)	Cable access only
(6)	5 anchoring points for the Table
(7)	8 anchoring points for the Gantry
(8)	Alternative anchoring points
1	Center of gravity
Minimum anchor embedment: 89 mm (2106573)	

SCALE 1:25

GE SUPPLIED GANTRY ANCHORS (2106573)

Anchor bolt
Anchor washer
Leveling screw
Adjuster lock ring
Gantry/Table stationary base
Ø 63.5 [2.5 in] leveling pad
9.7 [0.38 in] height for short rod
44.5 [1.75 in] height for long rod

ANCHORING AND FLOOR REQUIREMENTS

FINISHED FLOOR REQUIREMENTS

- Installation requires a finish floor in the scan and control rooms.
- The floor surface in the scan room directly under the gantry and table must be level.
- The floor shall be no greater than 6 mm [0.25 in] out of level over a 3048 mm [120 in] range, with level defined as the horizontal surface between the highest and lowest points.
- The floor shall have a minimum concrete thickness of 127 mm [5 in].
- Shims should not be used to compensate for a floor that does not meet this requirement.
- These requirements apply to all installation types.

NOT TO SCALE

NOTES:

If the concrete floor has a floor covering installed over it (such as floor tile), 17 or more openings 101.6 mm [4 in] in diameter will be cut into the floor covering to ensure the table and gantry rest on the concrete. (Openings are cut during installation.)
MEDRAD MOUNTING DETAILS FOR CEILING INJECTOR

Structural Supports
(Customer/contractor supplied)

356mm x 356mm x 12.7mm
(14 in x 14 in x 1/2 in)
Steel plate provided by GE and
installed by customer/contractor

9.5 mm [0.375 in] Bolts
(not by GE)

Mounting Assembly

3200mm-3353mm
[126 in-132 in] to finished floor
requires long post

3048mm [120 in]
to finished floor
requires intermediate post

2743mm-2896mm
[108 in-114 in] to finished floor
requires short post

Recommended height to floor
2083mm - 2235mm [82 in - 88 in]

Top of mounting assembly

Max. Arc
1660
[65.4 in]

GE ECat No.

<table>
<thead>
<tr>
<th>Post</th>
<th>Lengths</th>
<th>Min. Plate Height</th>
<th>Max. Plate Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>22.8</td>
<td>108</td>
<td>126</td>
</tr>
<tr>
<td>Intermediate</td>
<td>33.5</td>
<td>120</td>
<td>124</td>
</tr>
<tr>
<td>Long</td>
<td>39.4</td>
<td>132</td>
<td>333</td>
</tr>
</tbody>
</table>

Scale 1:10
Temperature and Humidity Specifications

IN-USE CONDITIONS

<table>
<thead>
<tr>
<th>ROOM</th>
<th>DESCRIPTION</th>
<th>Max (kW)</th>
<th>Max (btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Room</td>
<td>PET Gantry</td>
<td>2.8</td>
<td>9554</td>
</tr>
<tr>
<td></td>
<td>CT Gantry</td>
<td>5.5</td>
<td>18766</td>
</tr>
<tr>
<td></td>
<td>Patient table</td>
<td>0.3</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
<td>29344</td>
</tr>
</tbody>
</table>

*Technical Room is not mandatory, the placements of these elements are recommended in the Exam Room.

Heat Dissipation

<table>
<thead>
<tr>
<th>ROOM</th>
<th>DESCRIPTION</th>
<th>Max (kW)</th>
<th>Max (btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Room</td>
<td>POWER DISTRIBUTION UNIT</td>
<td>1.0</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td>PARC 4 (Reconstruction Cabinet)</td>
<td>2.0</td>
<td>6824</td>
</tr>
<tr>
<td></td>
<td>Chiller</td>
<td>4.0</td>
<td>13649</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>7</td>
<td>23873</td>
</tr>
</tbody>
</table>

Storage Conditions

- Material should not be stored for more than 6 months.
- Actual heat output is site specific and dependent on the specific configuration and customer usage.

Air Renewal

According to local standards. The HVAC system should be designed to provide 5 air changes per hour to maintain adequate air quality and temperature.

NOTE: In case of using air conditioning systems that have a risk of water leakage it is recommended not to install it above electric equipment or to take measures to protect the equipment from dropping water.
CONNECTIVITY REQUIREMENTS

Broadband Connections are necessary between customer’s imaging devices and the GE Support Center, starting from the installation process to ensure full support from the Engineering Teams. GE provides remote maintenance and maximum availability for the customer’s system, during the equipment’s full lifetime. GE guarantees to keep the equipment at a maximum performance level.

Proactive and reactive maintenance are available through utilizing a wide range of digital tools. You may choose from the connectivity solutions listed below:

- Site-to-Site VPN/GE Solution
- Site-to-Site VPN/Customer Solution
- Connection through Dedicated Service Network
- Internet Access - connectivity for InSite 2.0

The requirements for these connectivity solutions are explained in the broadband solutions catalogue (separate document).

ELECTRICAL NOTES

1. All wires specified shall be copper stranded, flexible, thermo-plastic, color coded, cut 10 foot long at outlet boxes, duct termination points or stubbed conduit ends. All conductors, power, signal and ground, must be run in a conduit or duct system. Electrical contractor shall ring out and tag all wires at both ends. Wire runs must be continuous copper stranded and free from splices.
 1.1. Aluminum or solid wires are not allowed.
 2. Wire sizes given are for use of equipment. Larger sizes may be required by local codes.
 3. It is recommended that all wires be color coded, as required in accordance with national and local electrical codes.
 4. Conduit sizes shall be verified by the architect, electrical engineer or contractor, in accordance with local or national codes.
 5. Convenience outlets are not illustrated. Their number and location are to be specified by others. Locate at least one convenience outlet close to the system control, the power distribution unit and one on each wall of the procedure room. Use hospital approved outlet or equivalent.
 6. General room illumination is not illustrated. Caution should be taken to avoid excessive heat from overhead spotlights. Damage can occur to ceiling mounting components and wiring if high wattage bulbs are used. Recommend low wattage bulbs no higher than 75 watts and use dimmer controls (except mr). Do not mount lights directly above areas where ceiling mounted accessories will be parked.
 7. Routing of cable ductwork, conduits, etc., must run direct as possible otherwise may result in the need for greater than standard cable lengths (refer to the interconnection diagram for maximum usable lengths point to point).
 8. Conduit turns to have large, sweeping bends with minimum radius in accordance with national and local electrical codes.
 9. A special grounding system is required in all procedure rooms by some national and local codes. It is recommended in areas where patients might be examined or treated under present, future, or emergency conditions. Consult the governing electrical code and confer with appropriate customer administrative personnel to determine the areas requiring this type of grounding system.
 10. The maximum point to point distances illustrated on this drawing must not be exceeded.
 11. Physical connection of primary power to GE equipment is to be made by customers electrical contractor with the supervision of a GE representative. The GE representative would be required to identify the required connection location, and insure proper handling of GE equipment.
 12. GEHC conducts power audits to verify quality of power being delivered to the system. The customer’s electrical contractor is required to be available to support this activity.

- All junction boxes, conduit, duct, duct dividers, switches, circuit breakers, cable tray, etc., are to be supplied and installed by customers electrical contractor.
- Conduit and duct runs shall have sweep radius bends.
- Conduits and duct above ceiling or below finished floor must be installed as near to ceiling or floor as possible to reduce run length.
- Ceiling mounted junction boxes illustrated on this plan must be installed flush with finished ceiling.
- All ductwork must meet the following requirements:
 1. Ductwork shall be metal with dividers and have removable, accessible covers.
 2. Ductwork shall be certified/rated for electrical power purposes.
 3. Ductwork shall be electrically and mechanically bonded together in an approved manner.
- PVC as a substitute must be used in accordance with all local and national codes.
 - All openings in access flooring are to be cut out and finished off with grommet material by the customers contractor.
 - General contractor to insert pull cords for all cable run conduits between the equipment room and the operators control room.
 - 10 foot pigtails at all junction points.
 - Grounding is critical to equipment function and patient safety. Site must conform to wiring specifications shown on this plan.
Outlet Legend for GE Equipment

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main disconnect panel (recommended 1 1/2m [60 in] floor to middle of panel)</td>
</tr>
<tr>
<td>2</td>
<td>75 [3"] conduit below floor for water lines</td>
</tr>
<tr>
<td>3</td>
<td>64 [2 1/2"] conduit below floor</td>
</tr>
<tr>
<td>4</td>
<td>89 [3 1/2"] conduit below floor</td>
</tr>
<tr>
<td>5</td>
<td>300 x 400 x 100 [12” x 16” x 4"] box for power distribution unit</td>
</tr>
<tr>
<td>6</td>
<td>300 x 400 x 150 [12” x 16” x 6"] box for power distribution unit</td>
</tr>
<tr>
<td>7</td>
<td>150 x 150 x 100 [6” x 6” x 4"] box for injector control</td>
</tr>
<tr>
<td>8</td>
<td>150 x 150 x 100 [6” x 6” x 4"] box above ceiling for injector</td>
</tr>
<tr>
<td>9</td>
<td>120 x 120 x 100 [4” x 4” x 4"] surface wall duct with minimum 2 dividers</td>
</tr>
<tr>
<td>10</td>
<td>450 x 100 [18” x 3 1/2"] surface wall duct with minimum 2 dividers</td>
</tr>
</tbody>
</table>

Additional Conduit Runs (Contractor Supplied and Installed)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Qty</th>
<th>In.</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 phase power</td>
<td>Main disconnect</td>
<td>1</td>
<td>AS REQ'D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency off</td>
<td>1</td>
<td>1/2</td>
<td>13</td>
</tr>
<tr>
<td>Main disconnect</td>
<td>Power Distribution Unit</td>
<td>1</td>
<td>AS REQ'D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Door Switch</td>
<td>1</td>
<td>1/2</td>
<td>13</td>
</tr>
<tr>
<td>Power Distribution Unit</td>
<td></td>
<td>1</td>
<td>1/2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Warning light</td>
<td>1</td>
<td>1/2</td>
<td>13</td>
</tr>
<tr>
<td>Warning light control</td>
<td></td>
<td>1</td>
<td>1/2</td>
<td>13</td>
</tr>
<tr>
<td>3 phase power</td>
<td>Injector Control</td>
<td>1</td>
<td>2 1/2</td>
<td>64</td>
</tr>
</tbody>
</table>
POWER REQUIREMENTS

- Power supply should come into a System PDB (MDP) containing the protective units and controls.
- The section of the supply cable should be calculated in accordance with its length and the maximum permissible voltage drops, equal to 3.4% max. of regulation for feeder size.
- There must be discrimination between supply cable protective material at the beginning of the installation (main low-voltage transformer side) and the protective devices in the A1 Main Disconnect.
- TNC neutral point connection must not be used.

SUPPLY CHARACTERISTICS
- Power input must be separate from any others which may generate transients (elevators, air conditioning, radiology rooms equipped with high speed film changers...).
- All equipment (lighting, power outlets, etc...) installed with GE system components must be powered separately.
- Phase imbalance 2% maximum.
- Maximum voltage variation at full load 6% (Including line impedance).
- Transients must be less than 1500V peak. (on a 380V line)
- A record of power input disturbances over a continuous two-weeks period (prior to delivery) enables determination of the frequency and degree of these disturbances and can be used to ascertain the need to provide line conditioning equipment.

GROUND SYSTEM
- System of equipotential grounding.
- Equipotential: The equipotential link will be by means of an equipotential bar. This equipotential bar should be connected to the protective earth conductors in the ducts of the non GE cableways and to additional equipotential connections linking up all the conducting units in the rooms where GE system units are located.
- The impedance of the earth bar should be less than or equal to 2 Ω (ohm).

CABLEWAYS
- Power and cable installation must comply with the distribution diagram.
- All cables must be isolated and flexible of HO7RN-F type, cable color codes must comply with standards for electrical installation.
- The cables from signaling and remote control (Y,SEO,L...) will go to A1 Main Disconnect with a pigtail length of 1.5m, and will be connected during installation. Each conductor will be identified and isolated (screw connector).

CABLEWAYS
- The general rules for laying cableways should meet the conditions laid down in current standards and regulations, with regard to:
 - Protecting cables against water (cableways should be waterproof).
 - Protecting cables against abnormal temperatures (proximity to heating pipes or ducts).
 - Protecting cables against temperature shocks.
 - Replacing cables (cableways should be large enough for cables to be replaced).
 - Metal cableways should be grounded.

GROUND SYSTEM
- System of equipotential grounding.
- Equipotential: The equipotential link will be by means of an equipotential bar. This equipotential bar should be connected to the protective earth conductors in the ducts of the non GE cableways and to additional equipotential connections linking up all the conducting units in the rooms where GE system units are located.
- The impedance of the earth bar should be less than or equal to 2 Ω (ohm).

CABLEWAYS
- Power and cable installation must comply with the distribution diagram.
- All cables must be isolated and flexible of HO7RN-F type, cable color codes must comply with standards for electrical installation.
- The cables from signaling and remote control (Y,SEO,L...) will go to A1 Main Disconnect with a pigtail length of 1.5m, and will be connected during installation. Each conductor will be identified and isolated (screw connector).