GE Healthcare does not take responsibility for any damages resulting from changes on drawings made by others. Errors may occur by not referring to the complete set of final issue drawings. GE cannot accept responsibility for any damage due to the partial use of GE final issue drawings, however caused. All dimensions are in millimeters unless otherwise specified. Do not scale from printed pdf files. GE accepts no responsibility or liability for defective work due to scaling from these drawings.

A mandatory component of this drawing set is the GE Healthcare Pre Installation manual. Failure to reference the Pre Installation manual will result in incomplete documentation required for site design and preparation.

Pre Installation documents for GE Healthcare products can be accessed on the web at: www.gehealthcare.com/siteplanning

GE Healthcare

OPTIMA NM/CT 640
FINAL STUDY

Drawn by: PMM
Verified by: CPC
Concession: ----
S.O. (GON): ----
PIM Manual: 5426783-1EN
Rev: 5

Format: A3
Scale: 1/4"=1'-0"
File Name: EN-NUC-TYP-OPTIMA_NM_640-WEB.DWG
Date: 27/Sep/2018
Sheet: 01/16

A2 04 - Equipment Layout
A3 05 - Radiation Protection
A4 06 - Equipment Dimensions
A5 07 - Delivery
S1 08 - Structural Notes
S2 09 - Structural Layout

S3 10 - Structural Details (1)
M1 11 - HVAC
E1 12 - Electrical Notes
E2 13 - Electrical Layout
E3 14 - Electrical Elevation
E4 15 - Power Requirements
E5 16 - Electrical Details - Interconnections

Typical

A 27/Sep/2018 First issue drawing / Final study based on MRI-
GENERAL SPECIFICATIONS

- GE is not responsible for the installation of developers and associated equipment, lighting, cassette trays and protective screens or derivatives not mentioned in the order.
- The final study contains recommendations for the location of GE equipment and associated devices, electrical wiring and room arrangements. When preparing the study, every effort has been made to consider every aspect of the actual equipment expected to be installed.
- The layout of the equipment offered by GE, the dimensions given for the premises, the details provided for the pre-installation work and electrical power supply are given according to the information noted during on-site study and the wishes expressed by the customer.
- The room dimensions used to create the equipment layout may originate from a previous layout and may not be accurate as they may not have been verified on site. GE cannot take any responsibility for errors due to lack of information.
- Dimensions apply to finished surfaces of the room.
- Actual configuration may differ from options presented in some typical views or tables.
- If this set of final drawings has been approved by the customer, any subsequent modification of the site must be subject to further investigation by GE about the feasibility of installing the equipment. Any reservations must be noted.
- The layout layout indicates the placement and interconnection of the indicated equipment components. There may be local requirements that could impact the placement of these components. It remains the customer's responsibility to ensure that the site and final equipment placement complies with all applicable local requirements.
- All work required to install GE equipment must be carried out in compliance with the building regulations and the safety standards of legal force in the country concerned.
- These drawings are not to be used for actual construction purposes. The company cannot take responsibility for any damage resulting therefrom.

CUSTOMER RESPONSIBILITIES

- It is the responsibility of the customer to prepare the site in accordance with the specifications stated in the final study. A detailed site readiness checklist is provided by GE. It is the responsibility of the customer to ensure all requirements are fulfilled and that the site conforms to all specifications defined in the checklist and final study. The GE Project Manager of Installation (PMI) will work in cooperation with the customer to follow up and ensure that actions in the checklist are complete, and if necessary, will aid in the rescheduling of the delivery and installation date.
- Prior to installation, a structural engineer of record must ensure that the floor and ceiling is designed in such a way that the loads of the installed system can be securely borne and transferred. The layout of additional structural elements, dimensioning and the selection of appropriate installation methods are the sole responsibility of the structural engineer. Execution of load bearing structures supporting equipment on the ceiling, floor or walls are the customer's responsibility.

RADIO-PROTECTION

- Suitable radiological protection must be determined by a qualified radiological physicist in conformation with local regulations. GE does not take responsibility for the specification or provision of radio-protection.

DISCLAIMER

GLOBAL SITE READINESS CHECKLIST (DI)

DOC1809666 Rev. 6

<table>
<thead>
<tr>
<th>Customer Name:</th>
<th>PMI Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GON/SO Number:</td>
<td>Field Service Name:</td>
</tr>
<tr>
<td>Equipment:</td>
<td>Country/City or City/State:</td>
</tr>
<tr>
<td>Site Visit Date for SRC:</td>
<td>SRC Status:</td>
</tr>
</tbody>
</table>

Site Ready Checks at Installation

General Site Planning

- Room dimensions, including ceiling height, for all Exam, Equipment/Technical & Control rooms meets GE specifications.
- Ceiling structure, if on the GE drawing, is at correct location and height according to the drawing specifications. Levelness and spacing has been measured. Overhead support Structure has been confirmed with contractor to meet GE criteria.
- Rooms that will contain equipment, including staging areas if applicable, are construction debris free. Precautions must be taken to prevent debris from entering rooms containing equipment.
- System power & grounding (PDB/MDP) is available as per GE specifications, installed at point of final connection and ready to use. Lock Out Tag Out is available.
- System power and grounded audit has been scheduled to be completed during installation of equipment. (If Required) GEHC PM is confirmed if needed.
- Adequate room illumination installed and working.
- Hedge and wall, floor, etc.) ready for GE cables and are of correct length and diameter. Cableways routed per GE Final drawings and access openings installed as determined by GEHC PM. Surface floor duct installed at time of system installation.
- HVAC systems installed, and the site meets minimum environmental operational system requirements.
- Network outlets installed and computer network available and working.
- Floor thickness have been discussed with customer/contractor and they are confirmed.
- Nuclear Medicine systems levelness measurement survey must be provided to GE prior the delivery.
- Site has license for using/Importing radioactive sources and a Hot Lab is available. Radioactive Sources should be available for system calibration during installation.
- Doors and windows complete or scheduled to be installed. If applicable, radiation protection (shielding) finished & radioprotection regulatory approval for installation obtained.

Specific for PET and Nuclear Medicine

- PMI Signature:
- Customer Signature:
- FS Signature: optional
CUSTOMER SITE READINESS REQUIREMENTS

- Any deviation from these drawings must be communicated in writing to and reviewed by your local GE healthcare installation project manager prior to making changes.
- Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE healthcare installation project manager can supply a reference list of rigging contractors.
- New construction requires the following:
 1. Secure area for equipment,
 2. Power for drills and other test equipment,
 3. Capability for image analysis,
 4. Restrooms.
- Provide for refuse removal and disposal (e.g. crates, cartons, packing)
- It is the customer’s responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

ENVIRONMENT

ALTITUDE
- Operating altitude: from -150 m [-492 ft] to 4100 m [13451 ft].

MAGNETIC FIELD SPECIFICATIONS
- In order to avoid interference on the system, the static field limits from the surrounding environment must be less than 1 Gauss in both the scan and the operator rooms.
 - Gantry:
 - Ambient static magnetic fields less than 1 Gauss.
 - Ambient AC magnetic fields less than 0.01 Gauss peak.
 - Operator console:
 - Ambient static magnetic fields less than 1 Gauss.
 - Use static dissipative vinyl.

MAXIMUM GANTRY AUDIBLE NOISE LEVEL
- The maximum ambient noise level is produced by the gantry during a CT scan acquisition.
 - It is less than 70 dB when measured at a distance of one meter from the nearest gantry surface, in any direction.

BACKGROUND RADIATION
- When the system is calibrated, background radiation from surrounding areas may adversely affect calibration. Therefore all radiation sources must be suitable shielded, including:
 - Waiting/Injection areas
 - Radionuclide storage and preparation area (sometimes known as "Hot Lab")

VIBRATION SPECIFICATIONS
- The system components are sensitive to vibration in the frequency range of 0.5 to 20 Hz, depending on the amplitude of the vibration. It is the customer’s responsibility to contract a vibration consultant or qualified engineer to verify that these specifications are met and implement an appropriate solution.
 - To minimize vibrations, the system must be installed on a solid floor, as far as possible from vibration sources (parking lots, roadways, heliports, elevators, hospital power plants... etc).
 - The maximum steady state vibration transmitted through the floor should not exceed 0.001 m/s² RMS maximum single frequency above ambient baseline from 0.5 to 80 Hz (measured in any 1 hour during a normal operating period).
 - The behavioral characteristics must be such that any measurable transient disturbance must also be minimized to less than 0.01 m/s² peak-to-peak.
The GE HPI Technical Support Group is an additional resource that can provide answers for general GE product siting questions and can be reached at (877)-305-9677 or mail to: HPITechCOE@ge.com

For Accessory Sales: (866) 281-7545 Options 1, 2, 1, 2 or mail to: gehcaccessorysales@ge.com

<table>
<thead>
<tr>
<th>BY</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>MAX HEAT OUTPUT (btu)</th>
<th>WEIGHT (lbs)</th>
<th>MAX HEAT OUTPUT (W)</th>
<th>WEIGHT (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>CT Gantry</td>
<td>3140</td>
<td>1984</td>
<td>920</td>
<td>900</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>NM Gantry</td>
<td>4500</td>
<td>4828</td>
<td>1320</td>
<td>2190</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>Patient table</td>
<td>682</td>
<td>1228</td>
<td>200</td>
<td>557</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>Storage Cabinet</td>
<td>-</td>
<td>287</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>NM Acquisition station</td>
<td>256</td>
<td>-</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>Collimator Cart</td>
<td>-</td>
<td>728</td>
<td>-</td>
<td>330</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>ECG Monitor</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>6kVA UPS</td>
<td>1500</td>
<td>125</td>
<td>440</td>
<td>57</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>Transformer for 6kVA UPS</td>
<td>1000</td>
<td>77</td>
<td>293</td>
<td>35</td>
</tr>
<tr>
<td>B/D</td>
<td>10</td>
<td>Main Disconnect Panel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>Mobile radiation shield</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>Counter top with sink, base and wall cabinets</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>Shelf for EMO switch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>Optional wall protection from collimator cart</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>Minimum opening for equipment delivery is 56 in. w x 91 in. h, contingent on a 96 in. corridor width</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Exam room height

- Finished floor to slab height: TBD
- Recommended finished ceiling height: 8'-0"
Since the system involves the use of radioactive isotopes, compliance with Nuclear Regulatory Commission regulations, or similar regulatory requirements (depending on the country), must be adhered to and all permissions obtained well in advance. It is recommended that regulatory compliance is arranged early in the site planning process.

It is essential that all preparations are completed so that required source materials can be obtained prior to installation, including calibration sources. Take into consideration that these sources may have fairly long delivery lead times, yet may also have a short half life, so that it may not be advisable to store them over long periods of time.

RADIOACTIVE ISOTOPES FOR SYSTEM CALIBRATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Site has license for Tc<sup>99m</sup></th>
<th>Tc<sup>99m</sup> will be available during installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic calibration</td>
<td>Co<sup>57</sup> (Rectangular Flood Source)</td>
<td>Tm<sup>170</sup></td>
</tr>
<tr>
<td>Isotopes to be used at site are available for installation.</td>
<td>I<sup>131</sup></td>
<td>Tm<sup>170</sup></td>
</tr>
<tr>
<td>Note: Specify age and strength</td>
<td>In<sup>111</sup></td>
<td>I<sup>131</sup></td>
</tr>
<tr>
<td></td>
<td>Ga<sup>67</sup></td>
<td>Xe<sup>133</sup> (inhalation gas)</td>
</tr>
</tbody>
</table>
THE CUSTOMER/CONTRACTOR SHOULD:

- Provide an area adjacent to the installation site for delivery and unloading of the GE equipment.
- Ensure that the dimensions of all doors, corridors, ceiling heights are sufficient to accommodate the movement of GE equipment from the delivery area into the definitive installation room.
- Ensure that access routes for equipment will accommodate the weights of the equipment and any transportation, lifting and rigging equipment.
- Ensure that all necessary arrangements for stopping and unloading on public or private property not belonging to the customer have been made.

CRATED DIMENSIONS OF DELIVERY

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DIMENSIONS</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT GANTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LENGTH</td>
<td>2250 mm (89 in)</td>
<td>1050 kg (2315 lb)</td>
</tr>
<tr>
<td>WIDTH</td>
<td>1200 mm (47 in)</td>
<td></td>
</tr>
<tr>
<td>HEIGHT</td>
<td>2200 mm (86.6 in)</td>
<td></td>
</tr>
<tr>
<td>NM GANTRY WITH DETECTORS MOUNTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LENGTH</td>
<td>1680 mm (66.1 in)</td>
<td>2413 kg (5320 lb)</td>
</tr>
<tr>
<td>WIDTH</td>
<td>1500 mm (59 in)</td>
<td></td>
</tr>
<tr>
<td>HEIGHT</td>
<td>2200 mm (86.6 in)</td>
<td></td>
</tr>
<tr>
<td>NM GANTRY WITHOUT THE DETECTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LENGTH</td>
<td>1680 mm (66.1 in)</td>
<td>2175 kg (4795 lb)</td>
</tr>
<tr>
<td>WIDTH</td>
<td>1500 mm (59 in)</td>
<td></td>
</tr>
<tr>
<td>HEIGHT</td>
<td>2200 mm (86.6 in)</td>
<td></td>
</tr>
<tr>
<td>TABLE</td>
<td></td>
<td>785 kg</td>
</tr>
<tr>
<td>LENGTH</td>
<td>3000 mm (118.1 in)</td>
<td></td>
</tr>
<tr>
<td>WIDTH</td>
<td>900 mm (35.4 in)</td>
<td></td>
</tr>
<tr>
<td>HEIGHT</td>
<td>1400 mm (55 in)</td>
<td></td>
</tr>
</tbody>
</table>
STRUCTURAL NOTES

- All units that are wall mounted or wall supported are to be provided with supports where necessary. Wall supports are to be supplied and installed by the customer or his contractors. See plan and detail sheets for suggested locations and mounting hole locations.

- Floor slabs on which equipment is to be installed must be level to specifications. (If not specified elsewhere on this sheet the floor levelness should be 1/8 in. [3 mm] in 10 ft. [3.05 m].

- Dimensions are to finished surfaces of room.

- For seismic regions ensure supports span three members.

- Customers contractor must provide all penetrations in post tension floors.

- Customers contractor must provide and install any non-standard anchoring. Documents for standard anchoring methods are included with GE equipment drawings for geographic areas that require such documentation.

- Customers contractor must provide and install hardware for "through the floor" anchoring and/or any bracing under access floors. This contractor must also provide floor drilling that cannot be completed because of an obstruction encountered while drilling by the GE installer such as rebar etc.

- It is the customer’s responsibility to perform any floor or wall penetrations that may be required. The customer is also responsible for ensuring that no subsurface utilities (e.g., electrical or any other form of wiring, conduits, piping, duct work or structural supports (i.e. post tension cables or rebar)) will interfere or come in contact with subsurface penetration operations (e.g. drilling and installation of anchors/screws) performed during the installation process. To ensure worker safety, GE installers will perform surface penetration operations only after the customer’s validation and completion of the “GE surface penetration permit”
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CT Gantry baseplate</td>
</tr>
<tr>
<td>2</td>
<td>NM Gantry base plate</td>
</tr>
<tr>
<td>3</td>
<td>Table Anchor plate</td>
</tr>
<tr>
<td>4</td>
<td>Collimator exchange plate</td>
</tr>
<tr>
<td>5</td>
<td>Swing plate</td>
</tr>
</tbody>
</table>

Diagram:
- EXAM ROOM
- Dimensions: 10'-4" by 7'-8"
ANCHORING TO THE FLOOR

Main anchoring point
Alternative anchoring point

SCALE 1:50

NM GANTRY MAIN ANCHORING

CT TRANSPORTER ANCHORING

NOT TO SCALE

FLOOR SPECIFICATIONS

- Floor leveling area: 576 cm \((18.9 \text{ ft}) \) x 363 cm \((11.9 \text{ ft}) \) (covering the entire planned area of table and gantry surface).
- Slope: within 30 mm \((1.18 \text{ in}) \) over 4300 mm \((160 \text{ in}) \) (for further information refer to PIM).
- Flatness: the surface must be smooth, with deviations of no more than 5 mm \((0.195 \text{ in}) \) between depressions and high spots in any 1500 mm \((59 \text{ in}) \) throughout the room or system installation area.
- Floor surface: a single poured surface.
- Floor strength: in order to enable mounting of the system floor anchors, concrete floors must have a minimum cube strength of \(fc=4350 \text{ psi} \) (30 MPa) at 28 days (curing time) for 25/30 concrete
- Floor thickness: the system's floor anchors are designed for use only on concrete floors that meet the minimal 140 mm \((5.5 \text{ in}) \) concrete floor requirements.
- It is the customer/contractor responsibility to have appropriate tests performed to determine and measure concrete strength.

LOADING DISTRIBUTION

CT Gantry front leveling pads
2.16 kN load per pad \(\phi 70 \) \((2.8 \text{ in}) \)

CT Gantry rear leveling pads
1.77 kN load per pad \(\phi 70 \) \((2.8 \text{ in}) \)

NM Gantry front pads
8.29 kN load per \(\phi 83 \) \((3.3 \text{ in}) \) pad

NM Gantry rear pads
2.45 kN load per pad \(\phi 83 \) \((3.3 \text{ in}) \)

Load 5.47 kN
distributed on 2 wheels + pivot

Patient Table center of gravity

CT Gantry weight: 8.83 kN
NM Gantry weight: 21.48 kN
(with HEG/Collimators mounted)
Table weight: 5.47 kN

Center of gravity
SCALE 1:50

Date
Rev A/Date: 27/Sep/2018

OPTIMA NM/CT 640
EN-NUC-TYP-OPTIMA_NM_640-WEB.DWG
53 - Structural Details (1)
TEMPERATURE AND HUMIDITY SPECIFICATIONS

IN-USE CONDITIONS

<table>
<thead>
<tr>
<th>EXAM/CONTROL ROOM</th>
<th>TEMPERATURE</th>
<th>HUMIDITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Min</td>
<td>Recommended</td>
</tr>
<tr>
<td>18°C (64°F)</td>
<td></td>
<td>22°C</td>
</tr>
<tr>
<td>Temperature gradient</td>
<td>≤ 3°C/h (5°F/h)</td>
<td></td>
</tr>
<tr>
<td>Relative humidity (1)</td>
<td>30% to 80%</td>
<td></td>
</tr>
<tr>
<td>Humidity gradient</td>
<td>≤ 5%</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>-150 m (-492 ft) to 4100 m (13451 ft)</td>
<td></td>
</tr>
</tbody>
</table>

STORAGE CONDITIONS

Temperature	+4°C (+40°F) to +27°C (+80°F)
Temperature gradient	≤ 3°C/h (5°F/h)
Relative humidity (1)	30% to 70%
Humidity gradient	≤ 5%
Air pressure	700 hPa to 1060 hPa

(1) non condensing

AIR RENEWAL

According to local standards.

NOTE

In case of using air conditioning systems that have a risk of water leakage it is recommended not to install it above electric equipment or to take measures to protect the equipment from dropping water.

HEAT DISSIPATION

<table>
<thead>
<tr>
<th>ROOM</th>
<th>DESCRIPTION</th>
<th>HEAT DISSIPATION (kW)</th>
<th>HEAT DISSIPATION (BTU/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Room</td>
<td>NM Gantry</td>
<td>1.3</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td>CT Gantry</td>
<td>0.9</td>
<td>3140</td>
</tr>
<tr>
<td></td>
<td>Patient table</td>
<td>0.2</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>2.4</td>
<td>8322</td>
</tr>
<tr>
<td></td>
<td>6 kVA UPS</td>
<td>0.6</td>
<td>1959</td>
</tr>
<tr>
<td></td>
<td>Transformer for 6kVA UPS</td>
<td>0.3</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>0.9</td>
<td>2959</td>
</tr>
<tr>
<td>Control Room</td>
<td>NM Acquisition station (computer only)</td>
<td>0.1</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>0.1</td>
<td>256</td>
</tr>
</tbody>
</table>

Technical Room is not mandatory, the placements of these elements are recommended in the Exam Room.
ELECTRICAL NOTES

1. All wires specified shall be copper stranded, flexible, thermo-plastic, color coded, cut 10 foot long at outlet boxes, duct termination points or stubbed conduit ends. All conductors, power, signal and ground, must be run in a conduit or duct system. Electrical contractor shall ring out and tag all wires at both ends. Wire runs must be continuous copper stranded and free from splices.

1.1. Aluminum or solid wires are not allowed.

2. Wire sizes given are for use of equipment. Larger sizes may be required by local codes.

3. It is recommended that all wires be color coded, as required in accordance with national and local electrical codes.

4. Conduit sizes shall be verified by the architect, electrical engineer or contractor, in accordance with local or national codes.

5. Convenience outlets are not illustrated. Their number and location are to be specified by others. Locate at least one convenience outlet close to the system control, the power distribution unit and one on each wall of the procedure room. Use hospital approved outlet or equivalent.

6. Conduit and duct runs shall have sweep radius bends with minimum radius in accordance with national and local electrical codes.

7. Routings of cable ductwork, conduits, etc., must run direct as possible otherwise may result in the need for greater than standard cable lengths (refer to the interconnection diagram for maximum usable lengths point to point).

8. Conduit turns to have large, sweeping bends with minimum radius in accordance with national and local electrical codes.

9. A special grounding system is required in all procedure rooms by some national and local codes. It is recommended in areas where patients might be examined or treated under present, future, or emergency conditions. Consult the governing electrical code and confer with appropriate customer administrative personnel to determine the areas requiring this type of grounding system.

10. The maximum point to point distances illustrated on this drawing must not be exceeded.

11. Physical connection of primary power to GE equipment is to be made by customers electrical contractor with the supervision of a GE representative. The GE representative would be required to identify the physical connection location, and insure proper handling of GE equipment.

12. GEHC conducts power audits to verify quality of power being delivered to the system. The customer's electrical contractor is required to be available to support this activity.

CONNECTIVITY REQUIREMENTS

Broadband Connections are necessary during the installation process and going forward to ensure full support from the Engineering Teams for the customers system. Maximum performance and availability for the customers system is maintained and closely monitored during the lifetime of the system. Proactive and reactive maintenance is available utilizing the wide range of digital tools using the connectivity solutions listed below:

- Site-to-Site VPN/GE Solution
- Site-to-Site VPN/Customer Solution
- Connection through Dedicated Service Network
- Internet Access - connectivity for InSite 2.0

The requirements for these connectivity solutions are explained in the broadband solutions catalogue (separate document).
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>30 Amp 480V disconnect</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4" x 4" x 4" box & coverplate for EMO switch</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6" x 6" x 4" box & coverplate</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Suitable bushings & locknuts</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Conduit flush with finished floor</td>
</tr>
<tr>
<td>6</td>
<td>1/2"</td>
<td>1/2" cnd below floor</td>
</tr>
<tr>
<td>7</td>
<td>3/4"</td>
<td>3/4" cnd below floor</td>
</tr>
<tr>
<td>8</td>
<td>2"</td>
<td>2" cnd below floor</td>
</tr>
<tr>
<td>9</td>
<td>2 1/2"</td>
<td>2 1/2" cnd below floor</td>
</tr>
<tr>
<td>10</td>
<td>4"</td>
<td>4" cnd below floor</td>
</tr>
</tbody>
</table>

Emergency Off (SEO 1), (recommended height 1.2m [48"] above floor)

Warning light

Warning light controller

Door switch

Duplex hospital grade, dedicated outlet 120-v, single phase outlet same feeder circuit as Main Disconnect Panel

Network outlet

ESTOP switch (locate near acquisition workstation)

EMO switch

Additional Conduit Runs

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Qty</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 PHASE POWER</td>
<td>MAIN DISCONNECT</td>
<td>1</td>
<td>AS REQ'D</td>
</tr>
<tr>
<td>EMERGENCY OFF (SEO 1)</td>
<td>WARNING LIGHT</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>WARNING LIGHT CONTROLLER</td>
<td>WARNING LIGHT</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>1 PHASE POWER</td>
<td>3 PHASE POWER</td>
<td>1</td>
<td>AS REQ'D</td>
</tr>
</tbody>
</table>
Typical

OPTIMA NM/CT 640

EN-NUC-TYP-OPTIMA_NM_640-WEB.DWG

1/4"=1'-0"

± 0'-0"

+8'-0"

T.B.D.

5'-0"

1'-0"

1

3

2

5'-0"
POWER REQUIREMENTS

POWER SUPPLY

<table>
<thead>
<tr>
<th>POWER SUPPLY</th>
<th>3 PHASES+N+G 380 to 480 VAC ± 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCIES</td>
<td>50/60 Hz ± 3 Hz</td>
</tr>
<tr>
<td>MAXIMUM POWER DEMAND</td>
<td>19 kVA</td>
</tr>
<tr>
<td>AVERAGE (CONTINUOUS)</td>
<td>10 kVA</td>
</tr>
<tr>
<td>POWER FACTOR</td>
<td>0.85</td>
</tr>
</tbody>
</table>

- Power supply should come into a Main Disconnect Panel (MDP) containing the protective units and controls.
- The section of the supply cable should be calculated in accordance with its length and the maximum permissible voltage drops.
- There must be discrimination between supply cable protective device at the beginning of the installation (main low-voltage transformer side) and the protective devices in the MDP.

SUPPLY CHARACTERISTICS

- Power input must be separate from any others which may generate transients (elevators, air conditioning, radiology rooms equipped with high speed film changers...).
- All equipment (lighting, power outlets, etc...) installed with GE system components must be powered separately.
- Phase imbalance 2% maximum.
- Maximum voltage regulation at full load = 5% (Including line impedance).
- Transients must be less than 1500 V peak. (on a 400 V line)

GROUND SYSTEM

- System of equipotential grounding.
- Equipotential: The equipotential link will be by means of an equipotential bar. This equipotential bar should be connected to the protective earth conductors in the ducts of the non GE cableways and to additional equipotential connections linking up all the conducting units in the rooms where GE system units are located.
- The impedance of the earth bar should be less than or equal to 10 Ohm.

CABLES

- Power and cable installation must comply with the distribution diagram.
- All cables must be isolated and flexible, cable color codes must comply with standards for electrical installation.
- The cables from signaling and remote control (Y, SEO, L...) will go to MDP with a pigtail length of 1.5 m, and will be connected during installation. Each conductor will be identified and isolated (screw connector).

CABLEWAYS

- The general rules for laying cableways should meet the conditions laid down in current standards and regulations, with regard to:
 FEEDER TABLE
<table>
<thead>
<tr>
<th>MIN. FEEDER WIRE SIZE, AWG OR MCM (mm²)</th>
<th>VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>480 VAC</td>
</tr>
<tr>
<td>6</td>
<td>480 VAC</td>
</tr>
<tr>
<td>4</td>
<td>480 VAC</td>
</tr>
<tr>
<td>4</td>
<td>380-480 V</td>
</tr>
</tbody>
</table>

- Two dry contacts: "System ON" and "X-Ray ON", both released by the system.
- 16m (52.5 ft) usable length, delivered with the system. (Supplied by customer if the distance between the MDP and the gantry exceeds 16m (52.5 ft).)

- Cable prepared on the floor with 2m (78.75 in) extra length

GENERAL NOTES

- In all cases qualified personnel must verify that the feeder (at the point of take-off) and the run to the GE system meet all the requirements stated in the PIM
- For a single unit installation, the minimum transformer size is 24KVa, with 2.4% rated regulation at unity power factor. Resultant maximum allowable feeder regulation is 3.4%
- A 6AWG (16mm²) Grounding conductor recommended in all cases, will run from the equipment back to the power source/main grounding point and always travel in the same conduit with the feeders

POWER REQUIREMENTS

FREQUENCIES

| FREQUENCY | 50/60 Hz ± 3 Hz |

MAXIMUM POWER DEMAND

| DEMAND | 19 kVA |

AVERAGE (CONTINUOUS) POWER DEMAND

| DEMAND | 10 kVA |

POWER FACTOR

| FACTOR | 0.85 |

POWER SUPPLY

Main supply 3 phases + N 380-480 V

GROUND cable (PE)

Main Disconnect Panel (MDP)

- 1-NO. 14 BLACK, 1-NO. 14 WHITE, 1-NO. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 RED
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN

Main Disconnect Panel (MDP)

- 1-NO. 14 BLACK, 1-NO. 14 WHITE, 1-NO. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 RED
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN
- 1-No. 14 BLACK, 1-No. 14 WHITE, 1-No. 14 GREEN

Main Disconnect Panel (MDP)

- 25 A - 30 A

Main Disconnect Panel (MDP)

SE0 1-2 Emergency OFF button, located 1.50m (48 in) above floor

WL X-Ray Warning Light

WLC Warning Light Control Box

DS Door Switch (optional)

Notes:

1. Two dry contacts: "System ON" and "X-Ray ON", both released by the system.
2. 16m (52.5 ft) usable length, delivered with the system. (Supplied by customer if the distance between the MDP and the gantry exceeds 16m (52.5 ft).)

Cableways:
INTERCONNECTIONS

"X-ray ON" and "Door contact" signals supplied by customer

4.5 m [14.7 ft]

15 m [49.2 ft]

3.5 m [11.5 ft]

24 m [78.7 ft]

16 m [52.5 ft]

23 m [75.5 ft]

CT Gantry

NM Gantry

Table

NM Host

ORDERABLE FROM GE

Wall mounted in control room

PARTIAL UPS (OPTION)