A mandatory component of this drawing set is the GE Healthcare Pre Installation manual. Failure to reference the Pre Installation manual will result in incomplete documentation required for site design and preparation.

Pre installation documents for GE Healthcare products can be accessed on the web at: www.gehealthcare.com/siteplanning

GE does not take responsibility for any damages resulting from changes on drawings made by others. Errors may occur by not referring to the complete set of final issue drawings. GE cannot accept responsibility for any damage due to the partial use of GE final issue drawings, however caused. All dimensions are in millimeters unless otherwise specified. Do not scale from printed pdf files. GE accepts no responsibility or liability for defective work due to scaling from these drawings.
It is the responsibility of the customer to prepare the site in accordance with the specifications stated in the final drawings. If this set of final drawings has been approved by the customer, any subsequent modification of the site must be subject to further investigation by GE about the feasibility of installing the equipment. Any reservations must be noted.

The equipment layout indicates the placement and interconnection of the indicated equipment components. There may be local requirements that could impact the placement of these components. It remains the customer’s responsibility to ensure that the site and final equipment placement complies with all applicable safety standards of legal force in the country concerned.

These drawings are not to be used for actual construction purposes. The company cannot take responsibility for any damage resulting therefrom.

CUSTOMER RESPONSIBILITIES

It is the responsibility of the customer to prepare the site in accordance with the specifications stated in the final study. A detailed site readiness checklist is provided by GE. It is the responsibility of the customer to ensure all requirements are fulfilled and that the site conforms to all specifications defined in the checklist and final study. The GE Project Manager of Installation (PMI) will work in cooperation with the customer to follow up and ensure that actions in the checklist are complete, and if necessary, will aid in rescheduling the delivery and installation date.

Prior to installation, a structural engineer of record must ensure that the floor and ceiling is designed in such a way that the loads of the installed system can be securely borne and transferred. The layout of additional structural elements, dimensioning and the selection of appropriate installation methods are the sole responsibility of the structural engineer. Execution of load bearing structures supporting equipment on the ceiling, floor or walls are the customer’s responsibility.

THE UNDERSIGNED, HEREBY CERTIFIES THAT I HAVE READ AND APPROVED THE PLANS IN THIS DOCUMENT.

DATE

NAME

SIGNATURE

GLOBAL SITE READINESS CHECKLIST (DI)

DOC1809666 Rev. 6

Customer Name:	PMI Name:
Field Service Name:	
Equipment:	Country/City or City/State:
Site Visit Date for SRC:	SRC Status:
Site Ready Checks at Installation	
General Site Planning	
Room dimensions, including ceiling height, for all exam, Equipment/Technical & Control rooms meet GE specifications.	
Room setup, if on the GE drawing, is at correct location and height according to the drawing specifications. Levelness and spacing has been measured. Overhead support Structure has been confirmed with contractor to meet GE criteria.	
Rooms that will contain equipment, including staging areas if applicable, are construction debris free. Precautions must be taken to prevent debris from entering rooms containing equipment.	
Delivery route from truck to installation space has been reviewed, all communications have occurred, arrangements made for special handling (if needed). Floors along delivery route will support weight of the equipment, reinforcements arranged if needed.	
System power & grounding (PDB/MDP) is available as per GE specifications, installed at point of final connection and ready to use. Lock Out Tag Out is available.	
System power and grounded audit has been scheduled to be completed during installation of equipment. (If Required) GEHC PM to confirm if needed.	
Adequate room illumination installed and working.	
Cableways (floor, wall, ceiling, etc.) ready for GE cables and are of correct length and diameter. Cableways routed per GE Final drawings and access openings installed as determined by GEHC PM. Surface floor duct installed at time of system installation.	
HVAC systems Installed, and the site meets minimum environmental operational system requirements.	
Network outlets installed and computer network available and working.	
Hospital IT/connectivity contacts have been engaged and information has been added to Project management tool. (If Required)	
Floor levelness/plans is measured and within tolerance, and there are no visible defects per GEHC specifications. Floor Strength and thickness have been discussed with customer/contractor and they have confirmed GE requirements are met.	
Customer supplied countertops where GE equipment will be installed are in place.	
Specific for MR	
RF Shield installed with possible exception of magnet entrance. RF Shield Effectivity and Ground Isolation Test needed. If GE is supplying RF shield, the RF shield Effectivity and Ground Isolation Test data is a Mandatory attachment into MyProjects.	
Power and connectivity is available for magnet monitoring.	
Delivery route for He dewars & gradient coil cart to the scanning room is available.	
Chilled water supply for Water Cooled Compressor or Air Cooled Compressor is ready and meets GE specifications.	
Water drain available in the equipment room, if applicable.	
Power for MR compressor & Chiller is available.	
Ensure oxygen venting system is available for magnet connection.	
Exhaust fan system is installed and operational per GE requirements.	
PFM Signature:	
Customer Signature:	
FS Signature: optional	
CUSTOMER SITE READINESS REQUIREMENTS

- Any deviation from these drawings must be communicated in writing to and reviewed by your local GE healthcare installation project manager prior to making changes.
- Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE healthcare installation project manager can supply a reference list of rigging contractors.
- New construction requires the following:
 1. Secure area for equipment,
 2. Power for drills and other test equipment,
 3. Capability for image analysis,
 4. Restrooms.
- Provide for refuse removal and disposal (e.g., crates, cartons, packing)
- It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system preinstallation manual for the vibration specification.

IMAGE QUALITY CONSIDERATIONS

Broadband RF noise is a single transient or continuous series of transient disturbances caused by an electrical discharge. Low humidity environmental conditions will have higher probability of electrical discharge. The electrical discharge can occur due to electrical arcing (micro arcing) or merely static discharge. Some potential sources capable of producing electrical discharge include:

- Loose hardware/fasteners vibration or movement (electrical contunuity must always be maintained)
- Flooring material including raised access flooring (panels & support hardware) and carpeting
- Electrical fixtures (i.e. Lighting fixtures, track lighting, emergency lighting, battery chargers, outlets)
- Ducting for HVAC and cable routing
- RF shield seals (walls, doors, windows etc.)

For additional information regarding image quality, refer to the pre-installation manual listed on the cover sheet.

MRI SITE PLANNING REMINDERS

Please refer to pre-installation checklist in pre-installation manual listed on the cover sheet for items critical to image quality.

1. The layout should be arranged so that the 5g line is contained to the magnet room. If not possible, a barrier is recommended to prevent entry to the 5g field area.
2. The spaces around, above, and below the magnet must be reviewed for effects of the 5g, 3g, 1g, and .5g fields. Refer to the proximity limit chart in the MR pre-installation manual referenced on the cover sheet.
3. For moving metal, the restriction lines typically extend outside of the MR space. Please confirm there are no moving metal concerns within these areas. An EMI study is recommended if the restriction lines are violated.
4. For vibration, analysis to be completed as required per pre-installation manual.
5. For EMI, review the site for the location of the main electrical feeders, AC devices, or distribution systems. An EMI study is recommended if large AC systems are nearby.
6. Details of the floor below the magnet must be reviewed. The structural engineer must verify that the quantity of steel in the volume 10ft [3.1m] x 10ft [3.1m] x 1ft [0.3m] deep (below the magnet) does not exceed the allowable steel content as given in the MR pre-installation manual referenced on the cover sheet.
7. All access/computer flooring is to be removed in both the magnet room and equipment room.

Responsibility for the coordination, design, engineering, and site preparation resides with the customer and their project architects and contractors. GE does not, by providing reviews and furnishing comments and assistance, accept any responsibility beyond its obligations as defined in the MR system, sale/purchase agreement.

MAGNETIC INTERFERENCE SPECIFICATIONS

- The customer must establish protocols to prevent persons with cardiac pacemakers, neurostimulators, and biostimulation devices from entering magnetic fields of greater than 5 gauss (exclusion zone).
- Main power transformers must remain outside the 3 gauss field. EMI < 20mg rms ac. EMI < 5.87mg dc.
- Potential exists under fault conditions that the 5 gauss line may expand radially to 9.35 ft. [2.85 m] and axially to 14.27 ft. [4.35 m] for 1 seconds or less. It should be noted that normal rampdowns or magnet rundown unit initiated quenches will not cause the magnetic field to expand.
- It is recommended every site consider the event of a quench and plan accordingly (such as placing 5 gauss warning signs at expanded locations).
- The ferrous metal objects listed below must not move into or inside of the moving metal sensitivity line during scans.

<table>
<thead>
<tr>
<th>TYPICAL MOVING MAGNETIC MASS</th>
<th>DISTANCE RADIALY</th>
<th>DISTANCE AXIALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cart, Gurneys 100-400 lbs (45-182 kg)</td>
<td>3 Gauss line</td>
<td>3 Gauss line</td>
</tr>
<tr>
<td>Forklifts, small elevators, cars, minivans, vans, pickup trucks, ambulances (objects greater than 400 lbs [182 kg])</td>
<td>15.5 FT</td>
<td>4.72 M</td>
</tr>
<tr>
<td>Buses and trucks (dump, tractor trailer, utility, fire trucks)</td>
<td>18.1 FT</td>
<td>5.52 M</td>
</tr>
</tbody>
</table>

For additional information refer to page and the Motor Industry Association of America (MIAA) and the National Electrical Manufacturers Association (NEMA) guidelines.
The GE HPI Technical Support Group is an additional resource that can provide answers for general GE product siting questions and can be reached at (877)-305-9677 or mail to HPITechCOE@ge.com.

For Accessory Sales: (866) 281-7545 Options 1, 2, 1, 2 or mail to gehcaccessorysales@ge.com

BY ITEM DESCRIPTION

<table>
<thead>
<tr>
<th>LETTER</th>
<th>ITEM</th>
<th>MAX HEAT OUTPUT (W)</th>
<th>WEIGHT (lbs)</th>
<th>MAX HEAT OUTPUT (btu)</th>
<th>WEIGHT (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>1.5T Magnet</td>
<td>8189</td>
<td>11700</td>
<td>2400</td>
<td>5320</td>
</tr>
<tr>
<td>A 2</td>
<td>Rear pedestal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A 3</td>
<td>Fixed Patient table</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>136</td>
</tr>
<tr>
<td>A 4</td>
<td>Magnet rundown unit</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>A 5</td>
<td>Phantom set storage cabinet</td>
<td>-</td>
<td>350</td>
<td>-</td>
<td>136</td>
</tr>
<tr>
<td>A 6</td>
<td>Blower box</td>
<td>3415</td>
<td>47</td>
<td>1000</td>
<td>21</td>
</tr>
<tr>
<td>A 7</td>
<td>Systems Cabinet</td>
<td>17000</td>
<td>1960</td>
<td>5000</td>
<td>890</td>
</tr>
<tr>
<td>A 8</td>
<td>Penetration Panel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A 9</td>
<td>Magnet monitor</td>
<td>205</td>
<td>10</td>
<td>60</td>
<td>4.3</td>
</tr>
<tr>
<td>A 10</td>
<td>Operator console computer</td>
<td>4947</td>
<td>108</td>
<td>1450</td>
<td>49</td>
</tr>
<tr>
<td>A 11</td>
<td>Operator workspace</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>11.80</td>
</tr>
<tr>
<td>A 12</td>
<td>Pneumatic patient alert</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>A 13</td>
<td>Cryocooler Compressor</td>
<td>1706</td>
<td>264</td>
<td>500</td>
<td>120</td>
</tr>
<tr>
<td>A 14</td>
<td>Water Chiller for System Cabinet & kW</td>
<td>5695</td>
<td>107</td>
<td>1670</td>
<td>48.50</td>
</tr>
<tr>
<td>A 15</td>
<td>Water Chiller for BRM Gradient Coil & kW</td>
<td>5695</td>
<td>86</td>
<td>1670</td>
<td>39</td>
</tr>
<tr>
<td>D 16</td>
<td>MRI Radiography</td>
<td>682</td>
<td>53.4</td>
<td>200</td>
<td>24.22</td>
</tr>
<tr>
<td>D 17</td>
<td>CCTV Monitor</td>
<td>26</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>D 18</td>
<td>CCTV Camera</td>
<td>8.27</td>
<td>-</td>
<td>3.75</td>
<td>-</td>
</tr>
<tr>
<td>D 19</td>
<td>CCTV Camera</td>
<td>0.35</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>D 20</td>
<td>Music system</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D 21</td>
<td>Injector on pedestal</td>
<td>94</td>
<td>-</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td>D 22</td>
<td>Injector control</td>
<td>675</td>
<td>17</td>
<td>198</td>
<td>8</td>
</tr>
<tr>
<td>D 23</td>
<td>Injector power supply</td>
<td>660</td>
<td>6</td>
<td>193</td>
<td>3</td>
</tr>
<tr>
<td>B 24</td>
<td>Main disconnect panel</td>
<td>900</td>
<td>350</td>
<td>264</td>
<td>158</td>
</tr>
<tr>
<td>C 25</td>
<td>Minimum opening for equipment delivery is 40 in. w x 82 in. h, contingent on a 72 in. corridor width</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 26</td>
<td>Minimum opening for is 43 in. w x 82 in. h, contingent on a 96 in. corridor width</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 27</td>
<td>Counter top for equipment- provide grommeted openings as required to route cables</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 28</td>
<td>Base cabinet for storage of: surface coils, patient positioning pads, phantoms, etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 29</td>
<td>Magnet access 9'-0" x 12'-0"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 30</td>
<td>Shelf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 31</td>
<td>Warning! 5 Gauss line outside the Magnet room limits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 32</td>
<td>Define RF shield's inset according to provisions made by the RF Shield vendor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend

- **A** GE Supplied
- **B** GE Supplied/contractor installed
- **C** Customer/contractor supplied and installed
- **D** Available from GE
- **E** Existing/Reinstall

Gauss Lines:
- 200 Gauss
- 5 Gauss
- 50, 30, 10 Gauss
- 3, 1, 0.5 Gauss

Examination Room Height

- Finished floor to slab height: TBD
- Recommended finished ceiling height: 8'-9"
MAGNETIC PROXIMITY LIMITS

The actual field strength can be affected by Magnetic shielding, Earth’s magnetic field, other magnetic fields and stationary or moving metal. This information must be used to evaluate potential site interaction of GE Healthcare equipment with other non-GE Healthcare equipment. Magnetic shielding can be installed to prevent interaction between the magnet and nearby sensitive devices. The GE Healthcare Project Manager of Installation (PMI) can work with the customer to coordinate the magnetic shielding site evaluation. The customer is responsible for installation of all magnetic shielding.

The customer must provide detail defining ferrous material below the magnet to the Project Manager so the GE Healthcare MR Siting and Shielding team can review for compliance.

STEEL MASS LIMITS TO MAGNET ISOCENTER (3x3 m [10x10 ft] AREA UNDER MAGNET)

Limits Of Steel Mass	Distance From Magnet Isocenter	Distance Below Top Surface Of Floor
kg/m³ | lbs/ft³ | min | in | min | in
0 | 0 | 0-1143 | 0-45 | 0-76 | 0-3
9.8 | 2 | 1143-1194 | 45-47 | 76-127 | 3-5
14.7 | 3 | 1194-1321 | 47-52 | 127-254 | 5-10
39.2 | 8 | 1321-1397 | 52-55 | 254-330 | 10-13
98.0 | 20 | 1397+ | 55+ | 330+ | 13+

The actual field strength can be affected by Magnetic shielding, Earth’s magnetic field, other magnetic fields and stationary or moving metal. This information must be used to evaluate potential site interaction of GE Healthcare equipment with other non-GE Healthcare equipment. Magnetic shielding can be installed to prevent interaction between the magnet and nearby sensitive devices. The GE Healthcare Project Manager of Installation (PMI) can work with the customer to coordinate the magnetic shielding site evaluation. The customer is responsible for installation of all magnetic shielding.

SOUND PRESSURE SPECTRAL DISTRIBUTION

1/3 Band Relative SPL

Average sound pressure level	Frequency
Control room | 80dBA | 20 Hz to 20kHz
Equipment room | 80dBA | 20 Hz to 20kHz
Magnet room | 127 dBA | 20 Hz to 20kHz

ISOGAUSS PLOTS

* The isogauss contour plots depicted on this drawing represent magnetic fringe fields resulting from the normal operation of the magnet provided with the MR system. The actual magnetic field intensity at any point in the vicinity of the magnet when installed may vary from the contour plots due to factors such as the concentrating effects of nearby ferrous objects ambient magnetic fields, including the earth’s magnetic field. Therefore, the contours shown are only approximations of actual field intensities found at a corresponding distance from the magnet’s isocenter.

ACOUSTICS SPECIFICATIONS

Acoustic and vibroacoustic information is provided for site planning and architectural design activities. It is the customer’s responsibility to hire a qualified acoustic engineer for solutions to further attenuate this transmitted noise and vibration, if required.

The actual room noise level may vary based on room design, optional equipment, and usage:

Frequency (1/3 Octave)	SPL (dBA) - normalized
12.5 | 0 |
25 | 5 |
31.5 | 10 |
40 | 15 |
50 | 20 |
63 | 25 |
80 | 30 |
100 | 35 |
125 | 40 |
160 | 45 |
200 | 50 |
250 | 55 |
315 | 60 |
400 | 65 |
500 | 70 |
630 | 75 |
800 | 80 |
1000 | 85 |
1250 | 90 |
1600 | 95 |
2000 | 100 |
2500 | 105 |
3150 | 110 |
4000 | 115 |
5000 | 120 |
6300 | 125 |
8000 | 130 |
10000 | 135 |
12500 | 140 |
16000 | 145 |

The actual field strength can be affected by Magnetic shielding, Earth’s magnetic field, other magnetic fields and stationary or moving metal. This information must be used to evaluate potential site interaction of GE Healthcare equipment with other non-GE Healthcare equipment. Magnetic shielding can be installed to prevent interaction between the magnet and nearby sensitive devices. The GE Healthcare Project Manager of Installation (PMI) can work with the customer to coordinate the magnetic shielding site evaluation. The customer is responsible for installation of all magnetic shielding.
A. Value decided according to the site layout
B. Mesh Shield is adjustable between 100-110mm [4-4.3 in]
C. System Cabinet cover is adjustable between 100-200mm [4-8 in]
D. PP cover is adjustable between 300-400mm [11.8-15.7 in]
Magnet Enclosure

Center of gravity is approximate and includes the GE Healthcare supplied VibroAcoustic Dampening Kit, but does not include cryogens, gradient assembly, side mounted electronics, or enclosures. Enclosure dimensions are for reference only, NOT FOR SITE PLANNING USE.

Penetration Panel

Global Operator Cabinet (GOC)

System Cabinet

Note:

- Center of gravity
- Air flow
- Scale 1:10
DELIVERY

ROUTING
- The customer is solely liable for routing of components from dock to final site.
- GE must be able to move system components in or out with no need to uncrate or disassemble any of the components. The entire passageway must be cleared, adequately lighted and free from dust.
- The floor and it surfacing must be able to withstand the live load of components and handling equipment.
- Floor surfacing must be continuous.
- The customer must protect any fragile flooring surfaces.

MINIMUM SPECIFICATIONS FOR MAGNET ROUTING
- Floor must be able to withstand a moving load of 5320 daN
- Minimum Opening: Height: 2.5m (98.5 in), width: 2.5m (98.5 in)
- Maximum slope: 30 degree

ROUTEING
- The customer is solely liable for routing of components from dock to final site.
- GE must be able to move system components in or out with no need to uncrate or disassemble any of the components. The entire passageway must be cleared, adequately lighted and free from dust.
- The floor and it surfacing must be able to withstand the live load of components and handling equipment.
- Floor surfacing must be continuous.
- The customer must protect any fragile flooring surfaces.

INSTALLATION AND DELIVERY ACCEPTANCE
- A survey of the site established by the customer and GE Healthcare will make the decision for the delivery time.
- This survey of the site (a form is made available by GE) is only to check if the apparent conditions of the site allow the equipment to be delivered.
- If the site is not ready, GE can delay the delivery time.

CRITICAL ITEMS FOR MAGNET DELIVERY
- 24/7 chilled water and 480v power for shield/cryo cooler
- 24/7 120v power for the magnet monitor
- Phone lines for magnet monitoring and emergency use
- Magnet room exhaust fan
- Cryogen venting (if roof hatch, completed within 24 hrs)

This is only a partial list of items required for delivery of the magnet. For a complete checklist refer to the pre-installation manual referenced on cover sheet.

DIMENSIONS OF THE MAIN REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DIMENSIONS LxWxH</th>
<th>WEIGHT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement BRM gradient coil assembly on a shipping cradle/cart</td>
<td>889x2444x1420</td>
<td>35x96.2x55.9</td>
<td>35x96.2x55.9</td>
</tr>
</tbody>
</table>

The weight bearing structure of the site should support any additional weight of the main replacement parts occurring during maintenance of the magnet, throughout the whole lifecycle of the MR.
STRUCTURAL NOTES

- All units that are wall mounted or wall supported are to be provided with supports where necessary. Wall supports are to be supplied and installed by the customer or his contractors.
- Dimensions are to finished surfaces of room.
- Certain MR procedures require an extremely stable environment to achieve high resolution image quality. Vibration is known to introduce field instabilities into the imaging system. The vibration effects on image quality can be minimized during the initial site planning of the MR suite by minimizing the vibration environment. See PROXIMITY LIMITS, PATIENT TABLE DOCK ANCHOR MOUNTING REQUIREMENTS AND VIBROACOUSTIC DAMPENING KIT details for additional information.
- Standard steel studs, nails, screws, conduit, piping, drains and other hardware are acceptable if properly secured. Any loose steel objects can be violently accelerated into the bore of the magnet. Careful thought should be given to the selection of light fixtures, cabinets, wall decorations, etc. To minimize this potential hazard. For safety, all removable items within the magnet room such as faucet handles, drain covers, switch box cover plates, light fixture components, mounting screws, etc. Must be non-magnetic. If you have a specific question about material, bring it to the attention of your GE project manager of installations.
- Floor levelness refer to MAGNET ROOM FLOOR SPECIFICATIONS DETAIL, this floor levelness requirement is important for accurate patient table docking.
- Non-movable steel such as wall studs or HVAC components will produce negligible effect on the active shield magnet.
- Customers contractor must provide all penetrations in post tension floors.
- Customers contractor must provide and install any non-standard anchoring. Documents for standard anchoring methods are included with GE equipment drawings for geographic areas that require such documentation.
- Customers contractor must provide and install hardware for “through the floor” anchoring and/or any bracing under access floors. This contractor must also provide floor drilling that cannot be completed because of an obstruction encountered while drilling by the GE installer such as rebar etc.
- Customers contractor to provide and install appropriate supports for the storage of excess cables.
- It is the customer’s responsibility to perform any floor or wall penetrations that may be required. The customer is also responsible for ensuring that no subsurface utilities (e.g., electrical or any other form of wiring, conduits, piping, duct work or structural supports (i.e. post tension cables or rebar)) will interfere or come in contact with subsurface penetration operations (e.g. drilling and installation of anchors/screws) performed during the installation process. To ensure worker safety, GE installers will perform surface penetration operations only after the customer’s validation and completion of the “GE surface penetration permit”

VIBRATION SPECIFICATIONS

Excessive vibration can affect MR image quality. Vibration testing must be performed early in the site planning process to ensure vibration is minimized. Both steady state vibration (exhaust fans, air conditioners, pumps, etc.) and transient vibrations (traffic, pedestrians, door slamming, etc.) must be assessed. The magnet cannot be directly isolated from vibration. Any vibration issue must be resolved at the source.

Transient vibration levels above the specified limits in the MR Site Vibration Test Guidelines must be analyzed. Any transient vibration that causes vibration to exceed the steady-state level must be mitigated.

MAGNET STEADY-STATE VIBRATION SPECIFICATIONS

<table>
<thead>
<tr>
<th>EXCITATION FREQUENCY [Hz]</th>
<th>ACCELERATION g's (10⁻⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>35</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>45</td>
<td>450</td>
</tr>
</tbody>
</table>
1. Vibroacoustic dampening kit (see floor structural detail)
2. Floor Mounting area for Blower Box
3. Patient table dock anchoring
4. Structural wall backing for Magnet Rundown Unit
5. Structural wall backing for Main Disconnect Panel
6. Structural wall backing for Magnet Monitor
7. Floor levelness area for Systems Cabinet
DOCK ANCHOR MOUNTING REQUIREMENTS

- The RF Shield vendor must design and install the dock anchor bolt
- The dock anchor hole must be drilled after the Magnet is installed
- The dock anchor must not contact floor rebar or other structural steel
- The dock anchor must electrically contact the RF shield at point of entry
- The dock anchors must have the following properties: Anchors must be two-part assembly (male/female), female side expansion- or epoxy-type, male a bolt or threaded rod with appropriate-sized nut (bolt or rod must be removable-not epoxied or cemented in place), anchors electrically conductive, anchors non-magnetic, anchors must not induce galvanic corrosion with the RF Shield, anchors commercially procured. The anchor rod hole clearance in the dock anchor base is 11mm [0.43 in], extend 60 mm ± 13 mm [2.25 in ±0.5 in] above the finished floor, the diameter must be sized appropriately. Anchors must meet the following clamping force: 2669 N. [600 lbs]
- The RF shield vendor must perform a pull test on the anchor (equal to the clamping force).

MAGNET ROOM FLOOR SPECIFICATIONS

Magnet, Enclosure, and Patient Table areas must be flat and level within 3 mm (0.125 in) within the shaded area shown.

The finished floor must support the weight of all components (e.g., patient table, gradient coil replacement cart) throughout operation and service life.

SYSTEMS CABINET & BLOWER BOX FLOOR REQUIREMENTS

1. Floor slope: < +/- 0.5 deg
2. Floor surface: < +/-5mm
3. Non-compressible flooring material only, for example, no carpet allowed.

NOTE: The blower box should be anchored with M6 bolts which can stand 0.217 Kilo Newton shear force and 0.076 Kilo Newton tension force.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cryogen vent (200mm [8"] O.D.)</td>
</tr>
<tr>
<td>2</td>
<td>Emergency exhaust vent - refer to magnet room vent requirements (position to be defined)</td>
</tr>
<tr>
<td>3</td>
<td>Pressure equalization vent - refer to magnet room vent requirements (position in ceiling to be defined)</td>
</tr>
<tr>
<td>4</td>
<td>(2) 13mm [1/2"] I.D. High pressure hoses and (4) 25mm [1"] compression clamps. 150 Micron filter, Shut off valves and By-pass valve as required.</td>
</tr>
</tbody>
</table>

MECHANICAL/PLUMBING NOTES

- All piping, fittings, supports, hoses, clamps, ventilation systems, etc. are to be supplied and installed by the customer or his contractors.
- For complete design and requirements, specifications and guidelines refer to the pre-installation manual: system cooling, cryogen venting, waveguides and exhaust venting.
- An emergency water cooling back-up supply is recommended for continuous cryogen compressor operation. If using an open loop back-up design, ensure a drain is provided. Please refer to the pre-install manual for optional back-up coolant supply requirements.
HEAT DISSIPATION DETAILS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ROOM</th>
<th>MAX W</th>
<th>MAX BTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet (MAG) and Patient Table (PT)</td>
<td>Magnet Room</td>
<td>2400</td>
<td>8189</td>
</tr>
<tr>
<td>Blower Box (MG6)</td>
<td>Magnet Room</td>
<td>1000</td>
<td>3418</td>
</tr>
<tr>
<td>Magnet Monitor (MON)</td>
<td>Control/Equipment Room</td>
<td>60</td>
<td>205</td>
</tr>
<tr>
<td>System Cabinet (SC)</td>
<td>Control/Equipment Room</td>
<td>5000</td>
<td>17000</td>
</tr>
<tr>
<td>Operator Workspace with LCD Color Display (GDC)</td>
<td>Control/Equipment Room</td>
<td>1450</td>
<td>4947</td>
</tr>
<tr>
<td>Water Chiller for BRM (4kW LCS) (WC1)</td>
<td>Control/Equipment Room</td>
<td>1670</td>
<td>5695</td>
</tr>
<tr>
<td>Water Chiller for SC (8kW LCS) (WC2)</td>
<td>Control/Equipment Room</td>
<td>1670</td>
<td>5695</td>
</tr>
<tr>
<td>Shield/Cryo Cooler Compressor - Water Cooled (CRY)</td>
<td>Control/Equipment Room</td>
<td>500</td>
<td>1700</td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE pre-engineered Main Disconnect Panel (MDP)</td>
<td>Control/Equipment Room</td>
<td>264</td>
<td>900</td>
</tr>
<tr>
<td>Magnetic Resonance Elastography (MRE)</td>
<td>Equipment Room</td>
<td>200</td>
<td>682</td>
</tr>
</tbody>
</table>

MAGNET ROOM VENTING REQUIREMENTS

HVAC VENT REQUIREMENTS
- HVAC vendor must comply with Magnet room temperature and humidity specifications and RF shielding specifications.
- RF Shield vendor must install open pipe or honeycomb HVAC waveguides.
- All serviceable parts in the Magnet room (e.g.: diffusers) must be non-magnetic.
- Waveguides must be nonmagnetic and electrically isolated.
- Incoming air must contain at least 5% air from outside the Magnet room (inside or outside the facility) to displace residual helium.

EMERGENCY VENT REQUIREMENT
- Exhaust vent system is supplied by the customer.
- All items within the RF enclosure must be non-magnetic.
- The exhaust vent system must be tested and operational before the magnet is installed.
- The exhaust intake vent must be located near the magnet cryogenic vent at the highest point on the finished or drop ceiling.
- The Magnet room exhaust fan and exhaust intake vent must have a capacity of at least 1200 CFM (34 m³/min) with a minimum of 12 room air exchanges per hour.
- The exhaust fan must be placed above RF shielding located outside 10 gauss (1mT) and with appropriate waveguide.
- The system must have a manual exhaust fan switch near the Operator Workspace and in the Magnet room near the door (the switches must be connected in parallel).
- All system components must be accessible for customer inspection, cleaning and maintenance.

PRESSURE VENT REQUIREMENT
- A pressure equalizing vent is required in the magnet room ceiling or in the wall, at the highest point possible.
- The vent minimum size must be (610 mm x 610 mm [24 in x 24 in]) or equivalent.
- The pressure equalization vent must be located so any Helium gas is not vented into occupied areas.
- Note: Location may affect acoustic noise transmission into occupied spaces.

MAGNET ROOM EXHAUST FAN SCHEMATIC

VENTING REQUIREMENTS
- Vent to outside environment
- RF Shield
- Ductwork
- Dielectric Isolator
- Exhaust Fan
- AC Power (rated as required for operation of Motorized Damper and Exhaust Fan)
- Ground secondary of low voltage transformer to RF Room Common Ground Stud
- Room ceiling
- Manual ON/OFF fan switches in parallel
- Exhaust Intake Vent
- To Facility Air Handler
- Options
- Motorized Damper
- SIGNA EXPLORER /SIGNA CREATOR
- M2 - HVAC-Venting
WATER COOLING

MAGNET ROOM

BRM: Body gradient
SC: System Cabinet
PP: Penetration Panel
WC1: Water Chiller for BRM
WC2: Cabinet Chiller
CRY: Water Cooler Cryo Cooler Compressor
NO: Normally open
Valve
Water Flow Meter

EQUIPMENT ROOM

CITY WATER BACKUP SPECIFICATIONS FOR COMPRESSOR

INLET WATER FLOW/TEMPERATURE FOR CRYOCOOLER COMPRESSOR

*RECOMMENDED TEMPERATURE AND WATER FLOW TO CRY ENTRY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET TEMP</td>
<td>35.2°F (4°C)</td>
<td>82.4°F (28°C)</td>
</tr>
<tr>
<td>INLET FLOW</td>
<td>1.0 gpm (4 l/min)</td>
<td>2.6 gpm (10 l/min)</td>
</tr>
<tr>
<td>TEMP RISE</td>
<td>89.8°F at 1.0 gpm (32°C at 4 l/min flow)</td>
<td>133.8°F at 2.6 gpm (12°C at 10 l/min flow)</td>
</tr>
<tr>
<td>HEAT DISSIPATION (kW)</td>
<td>7.2 kW</td>
<td></td>
</tr>
<tr>
<td>PRESSURE DROP</td>
<td>8.7 psi at 2.4 gpm flow (60 KPa at 8 l/min flow)</td>
<td></td>
</tr>
</tbody>
</table>

CHILLED WATER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling capacity</td>
<td>Minimum 20 kW</td>
</tr>
<tr>
<td>Inlet temperature to Chiller/Cryo Compressor</td>
<td>7 to 15°C (44.6 to 59°F)</td>
</tr>
<tr>
<td>Hose connections to the Chiller/Cryogen compressor</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>Availability</td>
<td>Continuous</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>0-40% propylene glycol</td>
</tr>
<tr>
<td>Maximum flow</td>
<td>70 l/min (18.5 gpm)</td>
</tr>
<tr>
<td>Minimum Flow</td>
<td>60 l/min (9.8 gpm)</td>
</tr>
<tr>
<td>Temperature rise at maximum flow</td>
<td>4.5°C (30°F) with 40% propylene glycol-water 3730J/(kgK) specific heat, 1021kg/m³ density, 20kW heat</td>
</tr>
<tr>
<td>Temperature rise at minimum flow</td>
<td>10.5°C (50.9°F) with 40% propylene glycol-water 3730J/(kgK) specific heat, 1021kg/m³ density, 20kW heat</td>
</tr>
<tr>
<td>Maximum inlet pressure of Chiller/Cryo Compressor</td>
<td>690 kPa [100 psi]</td>
</tr>
<tr>
<td>Minimum inlet pressure of Chiller/Cryo Compressor</td>
<td>200 kPa [29 psi]</td>
</tr>
<tr>
<td>Minimum continuous heat load</td>
<td>7.5 kW</td>
</tr>
<tr>
<td>pH level</td>
<td>6.5 to 8.2</td>
</tr>
<tr>
<td>Total hardness</td>
<td>Less than 200 gpm of calcium carbonate</td>
</tr>
<tr>
<td>Suspended matter</td>
<td>Less than 10 mg per liter and less than 150 micron particle size</td>
</tr>
<tr>
<td>Facility filter</td>
<td>150 micron or smaller with a field-changeable filter</td>
</tr>
<tr>
<td>Condensation protection</td>
<td>Condensation must be managed to prevent equipment damage or safety hazards</td>
</tr>
</tbody>
</table>

MINIMUM MAGNET CEILING HEIGHT (TOP VIEW)

Shaded area within solid lines indicates floor to ceiling minimum height of 2500 mm (98.5 in). This drawing is only valid if the quench pipe is leaving vertically from the magnet. If not the minimum height is 2667 mm (105 in).
KEY COMPONENTS:

- RF waveguide extended from wall to magnet adapter.
- Must be all same material and all welded or brazed.
- Support system must withstand 8229 N (1850 lbs)
- GE ventglass must be installed in vertical section directly over magnet

NOTES:

- for the Dielectric Break outside the Magnet room please see the Typical Cryogen Side Wall Exit

TYPICAL CRYOGENIC VENT PIPE DETAIL

- Waveguide is contractor supplied. Minimum 812 mm [32 in]. Must extend at least 100 mm [4 in] on magnet room side of the wall/ceiling and 25±6 mm [1±0.24 in] from the GE supplied pipe below isolation joint. Magnet room end must not be more than 2969 mm [117 in] above finished floor.

1. The 203 mm [8 in] OD vent material must be one of the following materials with the wall thickness indicated:
 a. SS 304: Minimum 0.89 mm [0.035 in]; Maximum 3.18 mm [0.125 in]
 b. AL 6061-T6: Minimum 2.11 mm [0.083 in]; Maximum 3.18 mm [0.125 in]
 c. CU DWV, M or L: Minimum 2.11 mm [0.083 in]; Maximum 3.56 mm [0.140 in]

2. Either tubes or pipes may be used and must be seamless or have welded seams

NOTE: All welds on the pipe must be ground down to a smooth 203 mm [8 in] diameter so that it can be clamped to the Ventglas with enough force.

3. Corrugated pipe or spiral duct must not be used

4. If required, bellows pipe less than 300 mm [12 in] in length may be used as a thermal expansion joint

5. The vent pipe must withstand the maximum pressure listed in the Pre-Installation Manual

6. Waveguide vent material must match the outside diameter of the magnet flanged vent adapter

TYPICAL CRYOGEN SIDE WALL EXIT WITH LONG SWEEP ELBOW

NOT TO SCALE

CRITICAL M4 - Cryogenics (1)
Magnet Cryogenic Vent System Pressure Drop Matrix

<table>
<thead>
<tr>
<th>Outer dia. of pipe (D)</th>
<th>Distance of vent system component from magnet</th>
<th>Pressure drop for straight pipe</th>
<th>Std sweep 45° elbow</th>
<th>Std sweep 90° elbow</th>
<th>Long sweep 45° elbow</th>
<th>Long sweep 90° elbow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft</td>
<td>m</td>
<td>psi/ft</td>
<td>psi</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>8 in. (200mm)</td>
<td>0-20</td>
<td>0.6-1</td>
<td>0.10</td>
<td>2.26</td>
<td>1.10</td>
<td>7.58</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>6.1-12.2</td>
<td>0.21</td>
<td>4.67</td>
<td>2.10</td>
<td>14.48</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>12.2-18.3</td>
<td>0.30</td>
<td>6.79</td>
<td>2.88</td>
<td>19.86</td>
</tr>
<tr>
<td></td>
<td>80-80</td>
<td>18.3-24.4</td>
<td>0.38</td>
<td>8.60</td>
<td>3.70</td>
<td>25.51</td>
</tr>
<tr>
<td>10 in. (250mm)</td>
<td>80-100</td>
<td>24.3-30.5</td>
<td>0.47</td>
<td>10.63</td>
<td>4.52</td>
<td>31.17</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>6.1-12.2</td>
<td>0.07</td>
<td>1.58</td>
<td>0.82</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>12.2-18.3</td>
<td>0.10</td>
<td>2.26</td>
<td>1.23</td>
<td>8.48</td>
</tr>
<tr>
<td></td>
<td>80-80</td>
<td>18.3-24.4</td>
<td>0.12</td>
<td>2.71</td>
<td>1.51</td>
<td>10.41</td>
</tr>
<tr>
<td>12 in. (300mm)</td>
<td>80-100</td>
<td>24.3-30.5</td>
<td>0.16</td>
<td>3.62</td>
<td>1.92</td>
<td>13.24</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>6.1-12.2</td>
<td>0.06</td>
<td>1.27</td>
<td>0.86</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>12.2-18.3</td>
<td>0.04</td>
<td>0.69</td>
<td>0.76</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>80-80</td>
<td>24.4-30.5</td>
<td>0.06</td>
<td>1.56</td>
<td>0.96</td>
<td>6.62</td>
</tr>
<tr>
<td>14 in. (350mm)</td>
<td>80-100</td>
<td>24.4-30.5</td>
<td>0.06</td>
<td>1.56</td>
<td>0.96</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>6.1-12.2</td>
<td>0.06</td>
<td>1.27</td>
<td>0.86</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>12.2-18.3</td>
<td>0.04</td>
<td>0.69</td>
<td>0.76</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>80-80</td>
<td>24.4-30.5</td>
<td>0.06</td>
<td>1.56</td>
<td>0.96</td>
<td>6.62</td>
</tr>
<tr>
<td>16 in. (400mm)</td>
<td>80-100</td>
<td>24.4-30.5</td>
<td>0.06</td>
<td>1.56</td>
<td>0.96</td>
<td>6.62</td>
</tr>
</tbody>
</table>

Notes:

1. Elbows with angles greater than 90 deg must not be used.
2. Data in Table is based on the following facts and assumptions:
 a. Initial flow conditions at magnet interface
 b. EM energy (13MJ) is dumped to He during quench and rises He temperature to 10 Kelvin
 c. Gas temperature starting at 10 Kelvin and increase with length determined by thermal energy balance
 d. 90% of He is assumed to be evacuated within 30 sec. None left after quench.
 e. Absolute roughness is assumed to be 0.25 mm.
 f. R/D = 1.0 for standard sweep elbows, R/D = 1.5 for long sweep elbows where D = outer diameter of pipe; R = radius of bend.
 g. The total pressure drop of the entire cryogenic vent system must be less than 17 psi (117.2 kPa). The calculation starts at the magnet vent interface and ends at the termination point outside the building.
ELECTRICAL NOTES

1. All wires specified shall be copper stranded, flexible, thermo-plastic, color coded, cut 10 foot long at outlet boxes, duct termination points or stubbed conduit ends. All conductors, power, signal, and ground, must be run in a conduit or duct system. Electrical contractor shall ring out and tag all wires at both ends. Wire runs must be continuous copper stranded and free from splices.

1.1. Aluminum or solid wires are not allowed.

2. Wire sizes given are for use of equipment. Larger sizes may be required by local codes.

3. It is recommended that all wires be color coded, as required in accordance with national and local electrical codes.

4. Conduit sizes shall be verified by the architect, electrical engineer or contractor, in accordance with local or national codes.

5. Convenience outlets are not illustrated. Their number and location are to be specified by others. Locate at least one convenience outlet close to the system control, the power distribution unit and one on each wall of the procedure room. Use hospital approved outlet or equivalent.

6. General room illumination is not illustrated. Caution should be taken to avoid excessive heat from overhead spotlights. Damage can occur to ceiling mounting components and wiring if high wattage bulbs are used. Recommend low wattage bulbs no higher than 75 watts and use dimmer controls (except mr). Do not mount lights directly above areas where ceiling mounted accessories will be parked.

7. Routing of cable ductwork, conduits, etc., must run direct as possible otherwise may result in the need for greater than standard cable lengths (refer to the interconnection diagram for maximum usable lengths point to point).

8. Conduit turns to have large, sweeping bends with minimum radius in accordance with national and local electrical codes.

9. A special grounding system is required in all procedure rooms by some national and local codes. It is recommended in areas where patients might be examined or treated under present, future, or emergency conditions. Consult the governing electrical code and confer with appropriate customer administrative personnel to determine the areas requiring this type of grounding system.

10. The maximum point to point distances illustrated on this drawing must not be exceeded.

11. Physical connection of primary power to GE equipment is to be made by customers electrical contractor with the supervision of a GE representative. The GE representative would be required to identify the physical connection location, and insure proper handling of GE equipment.

12. GEHC conducts power audits to verify quality of power being delivered to the system. The customer's electrical contractor is required to be available to support this activity.

CONNECTIVITY REQUIREMENTS

Broadband Connections are necessary during the installation process and going forward to ensure full support from the Engineering Teams for the customers system. Maximum performance and availability for the customers system is maintained and closely monitored during the lifetime of the system. Proactive and reactive maintenance is available utilizing the wide range of digital tools using the connectivity solutions listed below:

- Site-to-Site VPN/GE Solution
- Site-to-Site VPN/Customer Solution
- Connection through Dedicated Service Network
- Internet Access - connectivity for InSite 2.0

The requirements for these connectivity solutions are explained in the broadband solutions catalogue (separate document).

LIGHTING REQUIREMENTS

- All lighting fixtures and associated components must meet all RF shielded room and RF grounding requirements (e.g., track lighting is not recommended due to possible RF noise).
- All removable lighting fixtures and associated components must be non-magnetic.
- All lighting must use direct current (the DC must have less than 5% ripple).
- 300 lux must be provided at the front of the magnet for patient access and above the magnet for servicing.
- Fluorescent lighting must not be used in the magnet room.
- Lighting must be adjusted using a discrete switch or a variable DC lighting controller.
- SCR dimmers or rheostats must not be used.
- DC LED lighting may be used if the DC power converter and RF sources are all located outside the magnet room RF shield.

NOTE: LED lighting could cause image quality issues due to RF interference. Make sure a MR-compatible LED lighting solution is chosen.

- Battery chargers (e.g., used for emergency lighting) must be located outside the magnet room.
- Short filament length bulbs are recommended.
- Linear lamps are not recommended due to the high burnout rate.

- PVC as a substitute must be used in accordance with all local and national codes.
- Ductwork shall be metal with dividers and have removable, accessible covers.
- Conduit and duct runs shall have sweep radius bends
- Conducit and duct above ceiling or below finished floor must be installed as near to ceiling or floor as possible to reduce run length.
- Ceiling mounted junction boxes illustrated on this plan must be installed flush with finished ceiling.
- All ductwork must meet the following requirements:
 1. Ductwork shall be metal with dividers and have removable, accessible covers.
 2. Ductwork shall be certified/rated for electrical power purposes.
 3. Ductwork shall be electrically and mechanically bonded together in an approved manner.
 4. PVC as a substitute must be used in accordance with all local and national codes.
- All openings in access flooring are to be cut out and finished off with grommet material by the customers contractor.
- General contractor to insert pull cords for all cable run conduits between the equipment room and the operators control room.
- 10 foot pigtauls at all junction points.
- Grounding is critical to equipment function and patient safety. Site must conform to wiring specifications shown on this plan.
ELECTRICAL LAYOUT ITEM LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600mm x 150mm [24" x 6"]</td>
<td>Non-ferrous surface floor duct with minimum 2 dividers</td>
</tr>
<tr>
<td>2</td>
<td>300mm x 250mm [12" x 10"]</td>
<td>Non-ferrous surface wall duct with minimum 2 dividers</td>
</tr>
<tr>
<td>3</td>
<td>100mm x 100mm x 50mm [4" x 4" x 2"]</td>
<td>J-Box</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Liquid lines shall be routed in a liquid tight compartment separate from electrical lines</td>
</tr>
<tr>
<td>5</td>
<td>250mm x 100mm [10" x 3 1/2"]</td>
<td>Surface wall duct with minimum 2 dividers</td>
</tr>
<tr>
<td>6</td>
<td>100mm x 50mm [4" x 2"]</td>
<td>Raceway</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Main disconnect panel</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Box above ceiling size per local code</td>
</tr>
<tr>
<td>9</td>
<td>150mm x 100mm [6" x 3 1/2"]</td>
<td>Surface wall duct</td>
</tr>
<tr>
<td>10</td>
<td>One 50mm [2"]</td>
<td>conduit above ceiling</td>
</tr>
<tr>
<td>11</td>
<td>One 75mm [3"]</td>
<td>conduit above ceiling</td>
</tr>
<tr>
<td>12</td>
<td>100mm x 100mm x 100mm [4" x 4" x 4"]</td>
<td>J-Box</td>
</tr>
</tbody>
</table>

Outlet Legend for GE Equipment

- System emergency off (SEO), (recommended height 1.2m [48"] above floor)
- Door interlock switch
- Emergency exhaust fan switch (1.2m [48"] height recommended)
- Duplex hospital grade, dedicated wall outlet 120-v, single phase power
- Network outlet
- Dedicated telephone lines/network connection
- Duplex hospital grade, dedicated outlet 120-v emergency, single phase power, 15a
- Duplex hospital grade, dedicated outlet 120-v, single phase outlet routed through RF filter

Additional Conduit Runs *(Contractor Supplied and Installed)*

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Qty</th>
<th>Size (in)</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Disconnect Panel</td>
<td>Facility power</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td>Main Disconnect Panel</td>
<td>Power Distribution Unit (Inside Systems Cabinet)</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System emergency off</td>
<td>1</td>
<td>1/2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Penetration Panel Systems Cabinet</td>
<td>1</td>
<td>3/4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Door Switch Systems Cabinet</td>
<td>1</td>
<td>3/4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>System emergency off Penetration Panel</td>
<td>1</td>
<td>3/4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Magnet Rundown Unit Magnet</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>120-V 1Ø Power from RF filter</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RF filter</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room Light RF filter</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facility emergency power</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV Camera Waveguide or RF filter</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TV Monitor</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Injector control unit</td>
<td>1</td>
<td>2 1/2</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Injector head</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated Battery Charging Unit Waveguide or RF filter</td>
<td>1</td>
<td>as Req'd</td>
<td></td>
</tr>
</tbody>
</table>

Date

- 06/Feb/2020
E3 - Electrical Elevations

A

MAGNET ROOM

B

CONTROL ROOM

C

EQUIPMENT ROOM

D

MAGNET ROOM

± 0'-0"

± 0'-0"

+ TBD

± 0'-0"

4'-9"

4'-7"

5'-4"

3'-0"

7'-6"

8'-9"

9'-7"

4'-11"

7'-0"
CABLE MANAGEMENT

DUCT ON THE FLOOR

- Removable coverplate

DUCT ON THE WALL

- Removable coverplate

NOT TO SCALE

CABLE MANAGEMENT

WALL DUCT

- Removable coverplate

NOT TO SCALE
POWER REQUIREMENTS

INTRODUCTION
The system requires two independent power inputs:
- main power supply
- Magnet monitor power

SPECIFICATIONS OF MAIN POWER INPUT

<table>
<thead>
<tr>
<th>Power Supply (3 Phases+G)</th>
<th>INPUT VOLTAGE (V) ±10%</th>
<th>Frequency 50Hz/60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>480</td>
<td>40.9</td>
</tr>
<tr>
<td></td>
<td>415</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>49.1</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>51.7</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>98.1</td>
</tr>
<tr>
<td>Maximum input power</td>
<td></td>
<td>39.15 kVA</td>
</tr>
<tr>
<td>(5 sec max)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand-by power:
- 13.4 kVA at 0.9 lagging Power Factor including 4.4 kVA for PDU and 9kVA (continuous operation) for Shield/Cryo Cooler Cabinet. Critical Power Requirements is different per each configuration.

- Power input must be separated from any others which may generate transients (elevators, air conditioning, radiology rooms equipped with high speed film changers...).
- Total harmonic distortion less than 2.5%.
- Phase imbalance must not exceed 2%.
- Lock-out/Tag-out: The Main Disconnect Panel (MDP) shall provide an external single point lock-out/tag-out feature for the entire system and a means to externally lock-out/tag-out each output breaker independently. Each lock-out/tag-out feature shall accommodate a standard sized lock hasp.

SPECIFICATIONS OF MAGNET MONITOR POWER

- Magnet Monitor requires a 110/220 VAC, 50/60 Hz, 2.0 A facility supplied outlet. Power at the outlet must be continuously available.

CABLES
- Power and cable installation must comply with the distribution diagram.
- Size of the Main power input cable is determined by the customer, taking its length and admissible voltage drops into consideration.
- All cables must be isolated and flexible, cable color codes must comply with standards for electrical installation.
- The cables from signaling and remote control (Y, Emergency Off Button) will go to the Distribution Panel/Box with a pigtail length of 1.5m [60in], and will be connected during installation.
- Each conductor will be identified and isolated (screw connector).

GROUND SYSTEM
- The equipotential link will be by means of an equipotential bar.
- The grounding point of Distribution Panel/Box is directly connected to the building’s ground by an isolated copper pipe.
- The impedance of the earth bar should be less than or equal to 2 ohms

FEEDER TABLE

<table>
<thead>
<tr>
<th>MIN. feeder wire size, AWG or MCM (sq, M)/VAC</th>
<th>Minimum feeder wire length - ft (m)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (30.5)</td>
<td>100 (30.5)</td>
<td>50 (15)</td>
</tr>
<tr>
<td>150 (46)</td>
<td>150 (46)</td>
<td>100 (30)</td>
</tr>
<tr>
<td>200 (61)</td>
<td>200 (61)</td>
<td>150 (45)</td>
</tr>
<tr>
<td>250 (76)</td>
<td>250 (76)</td>
<td>200 (60)</td>
</tr>
<tr>
<td>300 (92)</td>
<td>300 (92)</td>
<td>250 (75)</td>
</tr>
<tr>
<td>350 (107)</td>
<td>350 (107)</td>
<td>300 (90)</td>
</tr>
<tr>
<td>400 (122)</td>
<td>400 (122)</td>
<td>350 (105)</td>
</tr>
<tr>
<td>450 (137)</td>
<td>450 (137)</td>
<td>400 (120)</td>
</tr>
</tbody>
</table>

GENERAL NOTES

In all cases qualified personnel must verify that the feeder (at the point of take-off) and the run to the MR system meet all the requirements stated in the PIM

For a single unit installation, the minimum transformer size is 112.5kVA. Regulated transformer is not required unless voltage changes exceed ±10% over a period of 1 hour or longer

Grounding conductor will run from the equipment back to the power source/main grounding point and always travel in the same conduit with the feeders

POWER DISTRIBUTION

- The system requires two independent power inputs:
- Main power supply
- Magnet monitor power

Specifications of Main Power Input:

- Power Supply (3 Phases+G)
- Frequency 50Hz/60Hz
- Maximum input power (5 sec max)
- 39.15 kVA

Stand-by power:
- 13.4 kVA at 0.9 lagging Power Factor including 4.4 kVA for PDU and 9kVA (continuous operation) for Shield/Cryo Cooler Cabinet.

- Critical Power Requirements is different per each configuration.

- Power input must be separated from any others which may generate transients (elevators, air conditioning, radiology rooms equipped with high speed film changers...).
- Total harmonic distortion less than 2.5%.
- Phase imbalance must not exceed 2%.
- Lock-out/Tag-out: The Main Disconnect Panel (MDP) shall provide an external single point lock-out/tag-out feature for the entire system and a means to externally lock-out/tag-out each output breaker independently. Each lock-out/tag-out feature shall accommodate a standard sized lock hasp.

Specifications of Magnet Monitor Power:

- Magnet Monitor requires a 110/220 VAC, 50/60 Hz, 2.0 A facility supplied outlet. Power at the outlet must be continuously available.

- Power and cable installation must comply with the distribution diagram.
- Size of the Main power input cable is determined by the customer, taking its length and admissible voltage drops into consideration.
- All cables must be isolated and flexible, cable color codes must comply with standards for electrical installation.
- The cables from signaling and remote control (Y, Emergency Off Button) will go to the Distribution Panel/Box with a pigtail length of 1.5m [60in], and will be connected during installation.
- Each conductor will be identified and isolated (screw connector).

Ground System:

- The equipotential link will be by means of an equipotential bar.
- The grounding point of Distribution Panel/Box is directly connected to the building’s ground by an isolated copper pipe.
- The impedance of the earth bar should be less than or equal to 2 ohms

Feeder Table:

- MIN. feeder wire size, AWG or MCM (sq, M)/VAC
- Minimum feeder wire length - ft (m)

General Notes:

In all cases qualified personnel must verify that the feeder (at the point of take-off) and the run to the MR system meet all the requirements stated in the PIM

For a single unit installation, the minimum transformer size is 112.5kVA. Regulated transformer is not required unless voltage changes exceed ±10% over a period of 1 hour or longer

Grounding conductor will run from the equipment back to the power source/main grounding point and always travel in the same conduit with the feeders

Notes:

- Runs 296 and 297, & power cords for shield/cryo cooler compressor cabinet, MRCC, & Magnet Monitor equipment (magnet monitor, UPS input & output, modules, optional multiplexer) are GE supplied cables. All other wirings is customer supplied.

- Two remote emergency “OFF” buttons are supplied with GE MDP option. Emergency off buttons are customer supplied if GE MDP option is not used.

- Circuit breakers are provided for PDU, CRYO COOLER COMPRESSOR CHILLER, GRADIENT CHILLER, SHIELD/CRYO COOLER COMPRESSOR CABINET, MAGNET MONITOR equipment circuits.

- All branch circuits drop out on loss of power. Coldhead MRCC, gradient MRCC, shield/Cryo Cooler compressor cabinet, & Magnet Monitor equipment automatically restart after 3 sec time delay upon restoration of power. Emergency off locks out all contactors.

- If 3 phase WYE with neutral and ground (5 wire system) input used then neutral must be terminated inside the main disconnect panel and not brought to the power cabinet.

- Supervisory circuit for HVAC interlock contacts open on loss of DC power or emergency off position.
Long / Short cable selection guidance:

- If the MG3 – MR2 Distance is less than 13.1 feet (4 m), select short cable.
- If the MG3 – MR2 Distance is in between 13.1 feet (4 m) and 30.2 feet (9.2 m), select long cable. RF extension cable option can provide additional 16.4 feet (5m) usable length.

Component Designator	**Description**	**Component Designator**	**Description**
M55 | Door interlock switch | M55 | Shield/Cryo Cooler Compressor Cabinet
EO1/EO2 | Emergency off buttons | MS1 | Magnet Monitor
MDP | Main Disconnect Panel | OW1 | Operator Workspace
MG2 | Magnet Enclosure | PP1 | Penetration Panel
MG3 | Magnet Rear Pedestal | PT1 | Patient Transport Table
MG6 | Blower Box | RG0 | Remote Graphic Display
MR2 | System Cabinet | SDT | Step Down Transformer
MS1 | Superconducting Magnet | WC1 | Water Chiller for BRM
MS4 | Magnet Rundown Unit | WC2 | Water Chiller for System Cabinet