COVID-19 pneumonia Time course, monitoring and treatment

2020

Luciano Gattinoni, MD, FRCP Georg-August-Universität Göttingen Germany

The main findings

Inflammation + focused stress

Peripheral densities

END EXPIRATION

Time course of VILI development In 40 hours

Lung Inhomogeneities and Time Course of Ventilator induced Mechanical Injuries

Cressoni et al,

Anesthesiology 2015

Lung vasoplegia

(undetermined mechanism)

Gravity dependent VA/Q mismatch

VA/Q mismatch

Positive pressure respiration and its application to the treatment of acute pulmonary edema
L. Barach,
Annals of Internal Medicine, 1938

Initial Lung Capillary Lung Edema Leak Injury P-SILI Impaired ↓Palv Gas Exchange [↑]Vt, Pendelluft Mechanics *Increased* Pes swings Increased Respiratory Drive

Acute Respiratory Failure Following
Pharmacologically Induced
Hyperventilation: An Experimental Animal
Study
D. Mascheroni et al,
ICM, 1988

Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure L. Brochard, A. Slutsky, A. Pesenti AJRCCM 2017

When does the patient become dyspneic?

7 days spontaneously breathing

O₂ mask, CPAP, NIV

COVID-19 pneumonia: different respiratory treatment for different

L. Gattinoni et al, ICM 2020 (in press)

Disease stage

Possible interventions

Disease stage

Possible interventions

Negative intrathoracic pressure

How to assess

Esophageal pressure

Surface electromyography

Clinical signs

How to control

• CPAP?

NIV?

Mechanical ventilation

Non invasive support

Pro

Con

- Increase oxygenation
- May decrease the Ppl swings

- Increase PaCO₂
- May not decrease effort
- Right ventricular failure
- Acute Kidney Injury

How I set the ventilator

- Mode
- **FiO2**
- Tidal Volume
- Respiratory rate
- PEEP

Remember that it is a long lasting disease

1. Which patient am I treating?

Type L

Type H

1. Which patient am I treating?

Type L

Type H

- <u>Low</u> elastance
- Low VA/Q
- Low lung weight
- Low recruitability

- <u>High</u> elastance
- <u>High</u> shunt
- <u>High</u> lung weight
- <u>High</u> recruitability

Type L

Sedation and muscle relax

 Mode: Volume Controlled Ventilation 		Mode:	Volume	Controlled	Ventilation	Wh
---	--	-------	--------	------------	-------------	----

• Prone position: only as a rescue Why?

Type L

Sedation and muscle relax

In these high compliance patients ($> 50 \text{ ml/cmH}_2\text{O}$) the plateau, driving pressure and mechanical power levels are well below the "classical" severe ARDS

Type H

Sedation and muscle relax

- Mode: Volume Controlled Ventilation
- FiO₂: high as needed
- Tidal Volume: possibly 6 ml/kg
- **Respiratory rate:** to stay < 60 mmHg PaCO₂
- **PEEP:** possibly $< 15 \text{ cmH}_2\text{O}$
- Prone position: daily

Why?

Why?

Why?

Why?

Why?

Why?

Type H

Sedation and muscle relax

In these low compliance patients ($< 50 \text{ ml/cmH}_2\text{O}$) the plateau, driving pressure and mechanical power levels are the same of the "classical" severe ARDS

Weaning

COVID-19 pneumonia lasts long, early weaning is problematic

Remember

- 1. More than 50% do not have a "classical" ARDS
- 2. It's a long course disease
- 3. 10 cmH₂O of PEEP, sedation and especially

patience is likely the best we can offer